A SYNGENIC MOUSE MODEL OF BREAST CANCER EXPRESSING HUMAN ERBB2 AND NANOLUC LUCIFERASE GENES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Syngenetic models are widely used in experimental oncology both for modeling tumor diseases and for testing anticancer drugs. However, when testing targeted drugs aimed at human tumor-associated antigens, the presence of target antigens in the animal's body is important. In this work, a syngenetic cell line with stable expression of two genes — ERBB2 gene encoding human epidermal growth factor type 2 HER2, and NaoLuc luciferase gene — was created based on human murine mammary gland carcinoma. Optical bioimaging methods have proven that the created cell line is characterized by stable expression of ERBB2 and NanoLuc in vitro and in vivo, retains the aggressiveness growth of the original 4T1 cell line in animals, and forms spontaneous metastases that are detected in the animal's body by intravital biovisualization methods.

About the authors

E. I. Shramova

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS; Moscow Institute of Engineering Physics, National Research Nuclear University "MEPhI"

Email: shramova.e.i@gmail.com
Moscow, Russian Federation; Moscow, Russian Federation

S. M. Deyev

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS; Moscow Institute of Engineering Physics, National Research Nuclear University "MEPhI"; Ogarev National Research Mordovian State University

Academician of the RAS Moscow, Russian Federation; Moscow, Russian Federation; Saransk, Russian Federation

G. M. Proshkina

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS

Moscow, Russian Federation

References

  1. Carpenter G., King L., Jr., Cohen S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro // Nature. 1978. V. 276. № 5686. P. 409-410.
  2. Schechter A. L., Stern D. F., Vaidyanathan L., et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen // Nature. 1984. V. 312. № 5994. P. 513-516.
  3. Marra A., Chandrarapaty S., Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives // Nat. Rev. Clin. Oncol. 2024. V. 21. № 3. P. 185-202.
  4. Waks A. G., Wiener E. P. Breast Cancer Treatment: A Review // JAMA. 2019. V. 321. № 3. P. 288-300.
  5. Goldenberg M. M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer // Clin. Ther. 1999. V. 21. № 2. P. 309-318.
  6. Vu T., Slivkovski M. X., Claret F. Y. Personalized drug combinations to overcome trastuzumab resistance in HER2-positive breast cancer // Biochim. Biophys. Acta. 2014. V. 1846. № 2. P. 353-365.
  7. Xia L., Wen L., Qin Y., et al. HER2-targeted antibody-drug conjugate induces host immunity against cancer stem cells // Cell. Chem. Biol. 2021. V. 28. № 5. P. 610-624 e615.
  8. Bakhtiarvand V. K., Akbari K. R., Sadri F., et al. Establishment of a murine model of breast cancer expressing human epidermal growth factor receptor 2 (4T1-HER2) // J. Cancer Res. Ther. 2024. V. 20. № 3. P. 984-992.
  9. Taha Z., Crupi M. J. F., Allugmani N., et al. Syngene-ic mouse model of human HER2+ metastatic breast cancer for the evaluation of trastuzumab entanisine combined with oncolytic rhabdovirus // Front. Immunol. 2023. V. 14. P. 1181014.
  10. Li P., Yang L., Li T., et al. The Third Generation Anti-HER2 Chimeric Antigen Receptor Mouse T Cells Alone or Together With Anti-PD1 Antibody Inhibits the Growth of Mouse Breast Tumor Cells Expressing HER2 in vitro and in Immune Competent Mice // Front. Oncol. 2020. V. 10. P. 1143.
  11. Sokolova E., Proshkina G., Kutova O., et al. Recombinant targeted toxin based on HER2-specific DARPin possesses a strong selective cytotoxic effect in vitro and a potent antitumor activity in vivo // J. Control. Release. 2016. V. 233. P. 48-56.
  12. Shramova E. I., Frolova A. Y., Serova E. V., et al. A novel HER2-specific sensor based on DARPin. 9-29 and albumin binding domain for real-time fluorescence-guided tumor detection in animal model of cancer // Biochem. Biophys. Res. Commun. 2024. V. 734. P. 150747.
  13. Dexter D. L., Kowalski H. M., Blazar B. A., et al. Heterogeneity of tumor cells from a single mouse mammary tumor // Cancer Res. 1978. V. 38. № 10. P. 3174-3181.
  14. Pulaski B. A., Ostrand-Rosenberg S. Mouse 4T1 breast tumor model // Curr. Protoc. Immunol. 2001. V. Chapter 20. P. Unit 20 22.
  15. Steiner D., Forrer P., Pluckthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display // J. Mol. Biol. 2008. V. 382. № 5. P. 1211-1227.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences