Phase relationships and distribution of S, Fe, Co, Ni, Re, Os, Pt between metal and sulfide melts in basalt–Fe–FeS–C system at 1400°C, 4 GPa

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The layering of Fe–FeS–C melt into Fe-metallic (Mc) and Fe-sulfide (Ms) liquids has been studied in the basalt–Fe–FeS–C system at 4 GPa, 1400°C. The partition and distribution coefficients of S, Fe, Co, Ni, Re, Os, Pt between Mc and Ms melts were determined. The partition coefficients D served as indicators of siderophilic and chalcophilic properties of each element, and Kd characterised their interelemental ratios during fractionation. In the Fe–Os–Co–Re series with D >1, siderophilic properties prevail, which increase with increasing values of the partition coefficients: 1.2–1.5–1.6–12.6. In the Ni–Pt–S series with D <1, chalcophilic properties prevail, which increase with decreasing D: 0.9–0.6–0.1. The values of the distribution coefficients Kd Re/Os (8.4) and Pt/Os (0.4) indicate the fractionation of Re and Pt relative to Os, with enrichment of rhenium in metallic and platinum in sulfide melt; the shift in the fractionation of Re/Os and Pt/Os relations and related systems of 187Re/187Os and 190Pt/186Os isotopes.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Gorbachev

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gor@iem.ac.ru
Ресей, Chernogolovka, Moscow Region

Yu. Shapovalov

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Email: gor@iem.ac.ru

Corresponding Member of the RAS

Ресей, Chernogolovka, Moscow Region

A. Kostyuk

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Email: gor@iem.ac.ru
Ресей, Chernogolovka, Moscow Region

P. Gorbachev

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Email: gor@iem.ac.ru
Ресей, Chernogolovka, Moscow Region

A. Nekrasov

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Email: gor@iem.ac.ru
Ресей, Chernogolovka, Moscow Region

Әдебиет тізімі

  1. Brett R., Bell P. M. Melting relations in the Fe-rich portion of the system Fe&z. sbnd; FeS at 30 kb pressure // Earth and Planetary Science Letters. 1969. 6(6). 479‒482. https://doi.org/10.1016/0012-821X(69)90119-8
  2. Банных О. А., Будберг П. Б., Алисова С. П. Диаграммы состояния двойных и многокомпонентных систем на основе железа // Металлургия. 1986. 440 с.
  3. Raghavan V. The C–Fe–S (Carbon–Iron–Sulfur) system // J. Alloy Phase Diag. 1988. V. 4. № 2. P. 133–142.
  4. Pedersen A. K. Basaltic glass with high-temperature equilibrated immiscible sulphide bodies with native iron from Disko, central West Greenland // Contributions to Mineralogy and Petrology. 1979. V. 69. № 4. P. 397–407.
  5. Горбачев Н. С., Осадчий Е. Г. Несмесимость в расплавах как фактор ранней дифференциации метеоритов и планет. ДАН СССР. 1980. Т. 255. № 3. С. 693–697.
  6. Gorbachev N. S., Osadchii E. G., Baryshnikova G. V. Immiscibility in Ore-Silicate Melts as a Factor in the Early Differentiation of Meteorites and Planets / Lunar and Planetary Science Conference. 1980. V. 11. P. 348–350.
  7. Маракушев А. А., Шаповалов Ю. Б., Зиновьева Н. Г. и др. Экспериментальное исследование процессов образования хондритов // ДАН СССР. 1995. Т. 345. № 6. С. 797–801.
  8. Dasgupta R., Buono A., Whelan G. et al. High-pressure melting relations in Fe–C–S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies // Geochim Cosmochim Acta. 2009. V. 73. № 21. P. 6678–6691. https://doi.org/10.1016/j.gca.2009.08.001
  9. Hayden L. A., Van Orman J. A., McDonough W. F. et al. Trace element partitioning in the Fe–S–C system and its implications for planetary differentiation and the thermal history of ureilites // Geochim Cosmochim Acta. 2011. V. 75. № 21. P. 6570–6583. https://doi.org/10.1016/j.gca.2011.08.036
  10. Gorbachev N. S., Kostyuk A. V., Gorbachev P. N. et al. Phase relations and distribution of elements in the Fe-S-C system // Experiment in Geosciences. 2021. V. 27. № 1. P. 42–44.
  11. Brenan J. M., Bennett N. R., Zajacz Z. Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation // Reviews in Mineralogy and Geochemistry. 2016. V. 81(1). 1–87. https://doi.org/10.2138/rmg.2016.81.1
  12. Siebert J., Corgne A., Ryerson F. J. Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation // Geochim. Cosmochim. Acta. 2011. 75. 1451–1489. https://doi.org/10.1016/j.gca.2010.12.013
  13. Mann U., Frost D. J., Rubie D. C. et al. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures-Implications for the origin of highly siderophile element concentrations in the Earth’s mantle // Geochim. Cosmochim. Acta. 2012. 84. 593–613. https://doi.org/10.1016/j.gca.2012.01.026
  14. Naldrett A. J. Magmatic Sulfide Deposits. Oxford Monographs on Geology and Geophysics. № 14. 1989.
  15. Fleet M. E., Crocket J. H., Stone W. E. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt // Geochimica et Cosmochimica Acta. 1996. V. 60. № 13. P. 2397–2412. https://doi.org/10.1016/0016-7037(96)00100-7
  16. Kiseeva E. S., Wood B. J. A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications // Earth Planet. Sci. Lett. 2013. 383. 68–81. https://doi.org/10.1016/j.epsl.2013.09.034
  17. Mungall J. E., Brenan J. M. Partitioning of platinum-group elements and Au between sulphide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements // Geochim. Cosmochim. Acta. 2014. 125. 265–269. https://doi.org/10.1016/j.gca.2013.10.002
  18. Gorbachev N. S. Fluid-magma interaction in sulfide-silicate systems. International Geology Review. 1990. V. 32. № 8. P. 749–836
  19. Литвин Ю. А. Физико-химические исследования плавления глубинного вещества Земли. М.: Наука, 1991. 312 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Backscattered electron micrographs of the silicate portion of the experimental sample: (a) Grt–Cpx matrix with intergranular glass (L1); (b) massive injection melt glass precipitates (L2) in the ore portion.

Жүктеу (153KB)
3. Fig. 2. Backscattered electron micrograph of the contact zone of Grt–Cpx restite with isolated sulfide inclusions.

Жүктеу (195KB)
4. Fig. 3. Micrograph in reflected electrons of massive sulfides with inclusions of single-phase and polyphase Fe-metallic globules: 1 – quenched sulfide matrix, 2 – single-phase Fe-metallic globules, 3 – polyphase Fe-metallic globules.

Жүктеу (255KB)

© Russian Academy of Sciences, 2024