Prospects for achieving carbon neutrality by economically developed countries

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The prospects for achieving carbon neutrality by economically developed countries (USA, EU, Norway, Canada, Japan and Australia) are studied. An analysis of the structure of energy and land use in these countries is carried out. Scenario estimates of the dynamics of carbon indicators of the economies of the world’s leading countries have been developed.

It is shown that the current rates of decarbonisation and development of the carbon capture and storage industry do not guarantee the achievement of climate neutrality by 2050, even in the world’s leading economies. A central challenge in achieving climate neutrality is the rapid and large-scale deployment of CCS in all its possible manifestations. All of the countries studied, except Japan, have their own capacity to store carbon for more than a hundred years.

To achieve climate neutrality, the leading OECD countries will need to ensure the annual capture of at least 6 billion tons of CO2 by 2050, which is almost 25 times higher than their current capacities (operating, under construction and under design) Despite the fact that climate change occupies almost a leading place on the global agenda, the actual results of efforts in this area are far from declared. It is no longer realistic to keep warming within 1.5°C, and at the current rate of decarbonization, even by world leaders, the defense of the second critical frontier in 2°C will soon be threatened.

Texto integral

Acesso é fechado

Sobre autores

V. Klimenko

National Research University «MPEI»; National University of Sciences and Technology «MISIS»; Energy Research Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nilgpe@mpei.ru

Academician of the RAS

Rússia, Moscow; Moscow; Moscow

A. Klimenko

National University of Sciences and Technology «MISIS»

Email: nilgpe@mpei.ru

Academician of the RAS

Rússia, Moscow

A. Tereshin

National Research University «MPEI»; National University of Sciences and Technology «MISIS»

Email: nilgpe@mpei.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Shirov A.A., Kolpakov A.Yu., Gambhir A., Koasidis K., Köberle A. C., McWilliams B., Nikas A. Stakeholder-driven scenario analysis of ambitious decarbonisation of the Russian economy // Renewable and Sustainable Energy Transition. 2023. V. 4. Id. 100055. https://doi.org/10.1016/j.rset.2023.100055
  2. Hechelmann R.-H., Paris A., Buchenau N., Ebersold F. Decarbonisation strategies for manufacturing: A technical and economic comparison // Renewable and Sustainable Energy Reviews. 2023. V. 188. Id. 113797. https://doi.org/10.1016/j.rser.2023.113797
  3. Rinaldi A., Syla A., Patel M.K., Parra D. Optimal pathways for the decarbonisation of the transport sector: Trade-offs between battery and hydrogen technologies using a whole energy system perspective // Cleaner Production Letters. 2023. V. 5. Id. 100044. https://doi.org/10.1016/j.clpl.2023.100044
  4. Li C., Tian G. Chen C., Liu P., Li Z. A long-term or a short-term decision when planning the decarbonisation transition pathway of power systems? A case study of China // Energy for Sustainable Development. 2023. V. 76. Id. 101264. https://doi.org/10.1016/j.esd.2023.101264
  5. Stephenson J.R., Sovacool B.K., Inderberg T.H.J. Energy cultures and national decarbonisation pathways // Renewable and Sustainable Energy Reviews. 2021. V. 137. Id. 110592. https://doi.org/10.1016/j.rser.2020.110592
  6. Fragkos P., van Soest H. L., Schaeffer R., Reedman L., Köberle A.C., Macaluso N., Evangelopoulou S., De Vita A., Sha F., Qimin C., Kejun J., Mathur R., Shekhar S., Dewi R.G., Diego S.H., Oshiro K., Fujimori S., Park C., Safonov G., Iyer G. Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States // Energy. 2021. V. 216. Id. 119385. https://doi.org/10.1016/j.energy.2020.119385
  7. Kilinc-Ata N., Proskuryakova L.N. Empirical analysis of the Russian power industry’s transition to sustainability // Utilities Policy. 2023. V. 82. Id. 101586. https://doi.org/10.1016/j.jup.2023.101586
  8. Durakovic G., Zhang H., Knudsen B.R., Tomasgard A., del Granado P.C. Decarbonizing the European energy system in the absence of Russian gas: Hydrogen uptake and carbon capture developments in the power, heat and industry sectors // J. Cleaner Production. 2024. V. 435. Id. 140473. https://doi.org/10.1016/j.jclepro.2023.140473
  9. Crowley-Vigneau A., Kalyuzhnova Y., Ketenci N. What motivates the ‘green’ transition: Russian and European perspectives // Resources Policy. 2023. V. 81. Id. 103128. https://doi.org/10.1016/j.resourpol.2022.103128
  10. Клименко В.В., Клименко А.В., Терешин А.Г. Безуглеродная Россия: есть ли шанс достичь углеродной нейтральности к 2060 году? // Доклады РАН. Физика, технические науки. 2023. Т. 511. С. 67–77. https://doi.org/10.31857/S2686740023040065 EDN: VPFUXM
  11. Клименко В.В., Клименко А.В., Терешин А.Г., Локтионов О.А. Дорога к климатической нейтральности: через лес под землю // Энергетическая политика. 2023. № 7 (185). С. 8–25. EDN: WVMBKT
  12. Клименко В.В., Клименко А.В., Терешин А.Г. На пути к климатической нейтральности: выстоит ли русский лес против энергетики? // Теплоэнергетика. 2024. № 1. С. 5–20. https://doi.org/10.56304/S0040363624010053
  13. Клименко А.В., Терёшин А.Г., Прун О.Е. Перспективы России в снижении выбросов парниковых газов // Известия РАН. Энергетика. 2023. № 2. С. 3–15. https://doi.org/10.31857/S0002331023020036 EDN: JXOTOM.
  14. Клименко А.В., Терёшин А.Г., Прун О.Е. Пути снижения выбросов парниковых газов в черной металлургии России // Промышленная энергетика. 2023. № 9. С. 8–19. https://doi.org/10.34831/EP.2023.67.59.002
  15. Клименко В.В., Терешин А.Г., Коликов К.С., Бернадинер И.М. Перспективы России в снижении выбросов метана и присоединении к Глобальному соглашению по метану // Энергетическая политика. 2023. № 11 (190). С. 56–73. https://doi.org/10.46920/2409-5516_2023_11190_5EDN: TMXGQO
  16. Башмаков И.А. Стратегия низкоуглеродного развития российской экономики // Вопросы экономики. 2020. № 7. С. 51–74.
  17. Башмаков И.А. Сценарии движения России к углеродной нейтральности // Энергосбережение. 2023. № 1. С. 40–49.
  18. Дегтярев К.С., Березкин М.Ю., Синюгин О.А. Оценка инвестиционных затрат на переход к безуглеродной экономике в России к 2060 г. // Окружающая среда и энерговедение. 2022. № 2. С. 29–39.
  19. Мастепанов А.М. Россия на пути к углеродной нейтральности // Энергетическая политика. 2022. № 1(167). С. 94–108.
  20. Ланьшина Т.А., Логинова А.Д., Стоянов Д.Е. Переход крупнейших экономик мира к углеродной нейтральности - сферы потенциального сотрудничества с Россией // Вестник международных организаций. 2021. Т. 16. №4. С. 98–125.
  21. Statistical Review of World Energy 2023. London: Energy Institute, 2023. 64 p.
  22. Клименко В.В. Влияние климатических и географических условий на уровень потребления энергии // ДАН. 1994. Т. 339. № 3. С. 319–332.
  23. International Energy Agency. World Energy Outlook 2023. Paris: IEA, 2023. 355 p.
  24. Canada’s Energy Future 2023: Energy Supply and Demand Projections to 2050. Ottava: Canada Energy Regulator, 2023. 134 p.
  25. Energy Transition Norway 2022. A National Forecast to 2050 / Ed.: M. Irvine. Høvik, Norway: DNV and Norsk Industri, 2022. 56 p.
  26. Syed A. Australian Government Energy Projections to 2050 / Kimura, S. and H. Phoumin (eds.), Energy Outlook and Energy Saving Potential in East Asia. ERIA Research Project Report 2014-33, Jakarta: ERIA, 2015. P. 49–68.
  27. Australian Long Term Emissions Reduction Plan. A whole-of-economy Plan to achieve net zero emissions by 2050. Australian Government Department of Industry, Science, Energy and Resources, 2021.
  28. Ковалева Н.О., Столпникова Е.М. Экология: жизнь в неустойчивой биосфере // История и современность. 2022. № 4. С. 58–80.
  29. Клименко В.В., Микушина О.В., Терешин А.Г. Динамика биотических потоков углерода при различных сценариях изменения площади лесов // Известия РАН. Физика атмосферы и океана. 2020. Т. 56. № 4. С. 462–472. https://doi.org/10.31857/S0002351520040033
  30. Global Status of CCS Report 2021. Melbourne, Australia: Global Carbon Capture and Storage Institute, 2021.
  31. Global Status of CCS Report 2023. Executive summary. Melbourne, Australia: Global Carbon Capture and Storage Institute, 2023.
  32. Филиппов С.П., Жданеев О.В. Возможности использования технологий улавливания и захоронения диоксида углерода при декарбонизации мировой экономики (обзор) // Теплоэнергетика. 2022. № 9. С. 5–21. https://doi.org/10.56304/S0040363622090016
  33. Member State Specific Pathway for NETP Deployment / Editors/Authors: Nixon Sunny, Solene Chiquier, Niall Mac Dowell. London: NEGEM, 2023.
  34. Freer-Smith P., Muys B., Bozzano M., Drössler L., Farrelly N., Jactel H., Korhonen J., Minotta G., Nijnik M. and Orazio C. Plantation forests in Europe: challenges and opportunities. From Science to Policy 9. European Forest Institute, 2019. https://doi.org/10.36333/fs09
  35. Rhodes D., Stephens M. Planted forest development in Australia and New Zealand: comparative trends and future opportunities // New Zealand J. of Forest Science. 2014. V. 44 (Suppl 1), S10. https://doi.org/10.1186/1179-5395-44-S1-S10

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Specific primary energy consumption per capita in developed countries (BP, 2023).

Baixar (161KB)
3. Fig. 2. The structure of the fuel and energy balance (a) and electricity generation (b) in 1990 and 2022 [21]; 2050 – IEA STEPS scenario [22] for the EU, USA and Japan, national programs of Canada [24], Norway [25] and Australia [26].

Baixar (342KB)
4. Fig. 3. Change in specific (a) and gross (b) energy emissions of CO2 according to data from [21] with extrapolation performed at the rate of change of the last 25 years (the “inertial” scenario), as well as the IEA STEPS scenario [23] for the EU, USA and Japan, the national programs of Canada [24], Norway [25] and Australia [26] (dashed lines).

Baixar (323KB)
5. Fig. 4. Dynamics of total emissions (solid lines) and absorption (dashed lines) of GHGs (relative to the level of anthropogenic emissions in 1990) (a) and specific GHG emissions per capita (b) according to UNFCCC (2024). Extrapolation is performed at the rate of change of the last 25 years (the “business as usual” scenario) and in accordance with current national plans for achieving climate neutrality and in accordance with current national plans for achieving climate neutrality (long dashed lines).

Baixar (384KB)
6. Fig. 5. Change in land area covered by wooded vegetation (compared to 1992 value) based on FAO satellite data (a) and land use structure based on FAO national inventories (b).

Baixar (289KB)
7. Fig. 6. Carbon dioxide storage projects worldwide in 2020 [30] and the dynamics of their capacities (million tons of CO2/year) [31].

Baixar (346KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024