Modeling the structural elements of broadband low-frequency sound absorbers for the transport vehicles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents an approach to a qualitative change, by 12 to 17 dB and more, of the low-frequency sound absorption inside and outside the transport vehicles. In the approach, the problems are solved of designing the composites of polymer matrixes with inorganic and biopolymer polydisperse phases, and of modeling, measuring and analyzing the sound-absorbing properties of thin mono-/bilayer structural elements based on the new composites. Validity of the approach is confirmed by correctness of the physical, chemical and measurement methods used, and by the results of experimental studying the test-models of the composites. These research results can be used in the current developing and prospective designing the aircraft for various purposes, and other types of transport vehicles.

Texto integral

Acesso é fechado

Sobre autores

E. Karpov

Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences; Moscow Polytechnic University

Autor responsável pela correspondência
Email: evkarpov@mail.ru

Corresponding Member of the RAS

Rússia, Novosibirsk; Moscow

V. Goverdovskiy

Moscow Polytechnic University

Email: vng_scien@yahoo.com
Rússia, Moscow

Yu. Brovkina

Moscow Polytechnic University

Email: yulbrovkina@yandex.ru
Rússia, Moscow

M. Mikhailenko

Moscow Polytechnic University; Institute of Solid Chemistry and Mechanochemistry of Siberian Branch of Russian Academy of Sciences

Email: mikhailenkoma79@gmail.com
Rússia, Moscow; Novosibirsk

F. Gorbunov

Institute of Solid Chemistry and Mechanochemistry of Siberian Branch of Russian Academy of Sciences

Email: f.gorbunov@corp.nstu.ru
Rússia, Novosibirsk

Bibliografia

  1. Environmental protection. ICAO Standards and Recommended Practices. V. 1. Aircraft noise. 2017.
  2. Шумовые характеристики пассажирских и грузовых самолетов. 2021. – https://eco-profi.info/index.php/akustika/akustika-samolet.html
  3. Мунин А.Г. Авиационная акустика. М.: Машиностроение, 1986.
  4. Шульдешов Е.М. Звукоизоляционные свойства авиационных теплозвукоизоляционных материалов // Труды ВИАМ. Полимерные материалы. 2019. Т. 12 (84). С. 37–45.
  5. Spakovszky Z.S. Advanced low-noise aircraft configurations and their assessment: past, present, and future // CEAS Aeronautical Journal. 2019. № 10. P. 137–157.
  6. Aerospace insulation materials. – Available: www.custommaterials.com.
  7. Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies. A review // Applied Materialstoday. 2021. V. 24. 101141.
  8. Вешкин Е.А., Сатдинов Р.А., Баранников А.А. Современные материалы для салона самолета // Труды ВИАМ. Электронный научный журнал. 2021. https://dx.doi.org/10.18577/2307-6046-2021-0-9-33-42
  9. Huang S., Li Y., Zhu J., Tsai D.P. Sound-absorbing materials // Physical Review Applied. 2023. 20. 010501.
  10. Lee C.-M., Goverdovskiy V.N., Sukhinin S.V., Konstantinov A.P., Trilis A.V., Yurkovskiy V.S. Phonon crystals as elements of the broadband vibration and noise protection systems / Proc. International Forum on Strategy Technology (IFOST2017), Ulsan, Korea, 31 May-02 June, 2017.
  11. Барабанов В.Г., Биспен Т.А., Молдавский Д. Д. и др. / В кн. Физико-химические аспекты предельных состояний и структурных превращений в сплошных средах, материалах и технических системах, под ред. Ю. В. Петрова. 2-й вып. СПб: Политехника, 2018. С. 119–123, 138–144.
  12. Молдавский Д.Д., Говердовский В.Н., Биспен Т.А., Бардаханов С.П., Ли Ч.-М. Способ изготовления шумопоглощающего материала // Патент РФ № 2745020. Бюл. № 8. Опубл. 18.03.2021.
  13. Polyboyarov V.A., Gorbunov F.K., Voloskova E.V. Modification of the Rubberlike Polymers with the Nanodispersions. Lambert Academic Publishing (Hindawi), 2014.
  14. Scien Co., Ltd.: Methods and products. – Available: www.scien.co.kr.
  15. ISO 10534. Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes.
  16. Lee C.-M., Xu Y. A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials // J. Sound and Vibration. 2009. V. 326. P. 290–301.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Micrography (dark field method) of the structure of test samples of composite elements made of foamed materials, with matrices of different morphology (dark tone) and different fillers (light tone): (a) – CaCO3, (b) – Cu2CO3(OH)2.

Baixar (92KB)
3. Fig. 2. Test samples of composite elements: a – with a combined inorganic (SiO2) and organic (rice chaff) filler, b – with an increased content of organic filler.

Baixar (164KB)
4. Fig. 3. System for analyzing the effectiveness of test samples of noise absorbers for various combinations of composite elements. Block diagram of ASR measurement and analysis.

Baixar (254KB)
5. Fig. 4. Noise absorption efficiency of elastic elements: single-layer commercial (PEM, VEM), single-layer composite (PKM, VKM, G17) and two-layer (G17-PEM1, G17-VEM2).

Baixar (96KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025