ON THE PROPERTIES OF THE FUNDAMENTAL SOLUTION OF A ONE-DIMENSIONAL WAVE INTEGRO-DIFFERENTIAL OPERATOR WITH A FRACTIONAL-EXPONENTIAL MEMORY FUNCTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The properties of the fundamental solution of the linear Volterra integro-differential operator, which is a one-dimensional wave linear differential operator with partial derivatives, perturbed the Volterra integral operator of convolution, are investigated. The kernel function of the integral operator is the sum of fractional exponential functions (Rabotnov functions) with positive coefficients. For linear Volterra integro-differential operators with second-order partial derivatives, the concept of hyperbolicity with respect to a cone is introduced. It is established that hyperbolicity with respect to a cone is equivalent to the localization of the support of the fundamental solution of a second-order linear Volterra integro-differential operator in the conjugate cone. Hyperbolicity relative to the cone is established for one-dimensionalwave integrodifferential operator with a fractional-exponential memory function.

About the authors

N. A Rautian

Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: naderhda.rautian@math.msu.ru
Moscow, Russia; Moscow, Russia

References

  1. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  2. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
  3. Владимиров В.С. Обобщенные функции в математической физике. М.: Наука, 1979. 320 с.
  4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
  5. Дрожжинов Ю.Н., Завьялов Б.И. Лекционные курсы НОЦ /Математический институт им. В.А. Стеклова. Вып. 5 Введение в теорию обобщенных функций. М.: МИАН, 2006. 164 с.
  6. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory. Theory and applications. Springer New-York–Dordrecht–Heidelberg–London, 2012. 576 p.
  7. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
  8. Власов В.В. Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений. М.: МАКС Пресс, 2016. 488 с.
  9. Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 с.
  10. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. M.: Мир, 1984.
  11. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
  12. Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
  13. Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces // Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
  14. Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences