Математическое моделирование нестационарных задач лазерной термохимии метана в присутствии каталитических наночастиц

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Разработан вычислительный алгоритм на основе метода конечных объемов с расщеплением системы уравнений по физическим процессам для моделирования нестационарных задач лазерной термохимии с каталитическими наночастицами в дозвуковых потоках газа. Проведено моделирование двухфазных потоков в нагретой трубе с лазерным излучением и радикальной кинетикой неокислительной конверсии метана. Показано, что на выходе трубы конверсия метана составляет более с преимущественным образованием этилена и водорода.

Об авторах

Е. Е. Пескова

Федеральное государственное бюджетное образовательное учреждение высшего образования “Национальный исследовательский Мордовский государственный университет имени Н.П. Огарёва”

Автор, ответственный за переписку.
Email: e.e.peskova@math.mrsu.ru
Россия, Саранск

Список литературы

  1. Борисов В.Е., Якуш С.Е., Сысоева Е.Я. Численное моделирование распространения ячеистых пламен в узком зазоре между пластинами // Математическое моделирование. 2022. Т. 34. № 3. С. 3–25.
  2. Day M.S., Bell J.B. Numerical simulation of laminar reacting flows with complex chemistry // Combustion Theory and Modelling. 2000. V. 4. № 4. P. 535–556.
  3. Snytnikov V.N., Peskova E.E., Stoyanovskaya O.P. Mathematical Model of a Two-Temperature Medium of Gas–Solid Nanoparticles with Laser Methane Pyrolysis // Mathematical Models and Computer Simulations. 2023. № 15 (5). P. 877–893.
  4. Fairbanks D.F., Wilke C.R. Diffusion Coefficients in Multicomponent Gas Mixtures // Ind. Eng. Chem. 1950. V. 42. № 3. P. 471–475.
  5. Snytnikov Vl.N., Snytnikov V.N., Masyuk N.S., Markelova T.V. The Absorption of CO2 Laser Radiation by Ethylene in Mixtures with Methane // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. V. 253. id 107119. P. 1–6.
  6. Lashina E.A., Peskova E.E., Snytnikov V.N. Mathematical modeling of the homogeneous-heterogeneous non-oxidative CH4 conversion: the role of gas-phase H or CH3 // Reaction Kinetics, Mechanisms and Catalysis. 2023. 15 p.
  7. Гуренцов Е.В., Еремин А.В., Фальченко М.Г. Моделирование процессов теплообмена лазерно-нагретых наночастиц с окружающей газовой средой // Физико-химическая кинетика в газовой динамике. 2011. Т. 11.
  8. Hairer E., Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Berlin: Springer-Verlag, 1996.
  9. Русанов В.В. Расчет взаимодействиянестационарных ударных волн с препятствиями // Журнал вычислительной математики и математической физики. 1961. Т. 1. № 2. C. 267–279.
  10. Klein B., Müller B., Kummer F., Oberlack M. A high-order discontinuous Galerkin solver for low Mach number flows // International Journal for Numerical Methods in Fluids. 2015.
  11. Пескова Е.Е., Снытников В.Н., Жалнин Р.В. Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами // Компьютерные исследования и моделирование. 2023. Т. 15. № 5. С. 1169–1187.
  12. Shu C.W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws // ICASE Report. 1997. № 97–65. P. 79.
  13. Флетчер К. Вычислительные методы в динамике жидкости. М.: Мир, 1991.
  14. Снытников В.Н., Снытников Вл.Н., Масюк Н.С., Маркелова Т.В., Пармон В.Н. Стенд лазерного катализа // Приборы и техника эксперимента. 2021. № 3. С. 129–137.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024