A method for estimating the number of regolith particles in a dust cloud in a discharge initiated by gyrotron radiation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article proposes a new method for estimating the number of particles in experiments on modeling the interaction of cosmic and lunar dust with the surface of spacecraft. The experiments are based on the creation of a dusty plasma cloud, when exposed to radiation from a powerful pulsed gyrotron on a substance simulating cosmic or lunar dust. This approach was tested using a lunar regolith simulator. The dynamics of particles in dust clouds obtained as a result of microwave discharge is analyzed using the ImageJ program.

全文:

受限制的访问

作者简介

A. Sokolov

Prokhorov General Physics Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

Т. Gayanova

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

А. Kozak

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

D. Malakhov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

I. Nugaev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

D. Kharlachev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

V. Stepakhin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
俄罗斯联邦, Moscow

参考

  1. T. E. Gayanova, E. V. Voronova, S. V. Kuznetsov, E. A. Obraztsova, N.N. Skvortsova, A. S. Sokolov, I. R. Nugaev and V.D. Stepakhin, High Energy Chem. 57, 1, 53 (2023).
  2. N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin et al., Chem. Phys. 516, 63 (2019).
  3. S. I. Popel, L. M. Zelenyi, A. P. Golub and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).
  4. И. А. Кузнецов, А. В. Захаров, Л. М. Зеленый, С. И. Попель и др., Астрон. журн. 100, 1, 41 (2023).
  5. S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
  6. J. Williams, Journal of Plasma Physics 82(03) (2016).
  7. Y. Zeng, Zh. Ma, Y. Feng, Review of Scientific Instruments, 93 (3) (2022).
  8. Н. Н. Скворцова, В. Д. Степахин, Д. В. Малахов, Л. В. Колик, Е. М. Кончеков, Е. А. Образцова, А. С. Соколов, А. А. Сорокин, Н. К. Харчев и О. Н. Шишилов, Патент №2727958 Российская Федерация, рег. 28 июля 2020 г.
  9. Г. М. Батанов, Н. К. Бережецкая, В. Д. Борзосеков, Л. В. Колики др., Успехи прикладной физики 1, 5, 564 (2013).
  10. А. С. Соколов, Д. В. Малахов и Н.Н. Скворцова, Инженерная физика 11, 3 (2018).
  11. М. В. Тригуб, Д. В. Малахов, В. Д. Степахин, Г. С. Евтушенко, Д. А. Балабанов и Н. Н. Скворцова, Оптика атмосферы и океана 33, 3, 199 (2020).
  12. А. А. Летунов, Н. Н. Скворцова, И. Г. Рябикина, Г. М. Батанов, и др., Инженерная физика 10, 36 (2013).
  13. E.V. Voronova, A. V. Knyazev, A. A. Letunov, V. P. Logvinenko, N. N. Skvortsova, and V. D. Stepakhin, Physics of Atomic Nuclei. 84, 1761 (2021).
  14. ImageJ Independent Platform, https://imagej.nih.gov/ij/

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental setup: 1 — gyrotron, 2 — focusing mirrors of the quasi-optical path, 3 — flat mirror, 4 — microwave calorimeter, 5 — quasi-optical microwave coupler, 6/7/8 — microwave detectors of incident, reflected, and transmitted radiation, 9 — plasma-chemical reactor, VN1 — industrial camera, VN2 — high-speed video camera.

下载 (116KB)
3. Fig. 2. Obtained spectra for LMS-1D + 10% Fe mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

下载 (165KB)
4. Fig. 3. Obtained spectra for LMS-1D + 10% Mg mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

下载 (138KB)
5. Fig. 4. Cloud of glowing particles for LMS-1D + 10% Mg regolith mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

下载 (203KB)
6. Fig. 5. Software-approximated particles levitating in the reactor volume for LMS-1D + 10% Fe mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

下载 (169KB)
7. Fig. 6. Software-approximated particles levitating in the reactor volume for LMS-1D + 10% Mg mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

下载 (155KB)
8. Fig. 7. Dynamics of change in the number of observed particles in LMS-1D + 10% Fe and LMS-1D + 10% Mg mixtures for pulse power of 300 kW, duration — 6 ms.

下载 (166KB)
9. Fig. 8. Dynamics of change in the number of observed particles for LMS-1D + 10% Fe and LMS-1D + 10% Mg mixtures for pulse power of 400 kW, duration — 6 ms.

下载 (171KB)

版权所有 © The Russian Academy of Sciences, 2024