A method for estimating the number of regolith particles in a dust cloud in a discharge initiated by gyrotron radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article proposes a new method for estimating the number of particles in experiments on modeling the interaction of cosmic and lunar dust with the surface of spacecraft. The experiments are based on the creation of a dusty plasma cloud, when exposed to radiation from a powerful pulsed gyrotron on a substance simulating cosmic or lunar dust. This approach was tested using a lunar regolith simulator. The dynamics of particles in dust clouds obtained as a result of microwave discharge is analyzed using the ImageJ program.

Full Text

Restricted Access

About the authors

A. S. Sokolov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: dmc63@yandex.ru
Russian Federation, Moscow

Т. E. Gayanova

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Russian Federation, Moscow

А. К. Kozak

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Russian Federation, Moscow

D. V. Malakhov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Russian Federation, Moscow

I. R. Nugaev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Russian Federation, Moscow

D. Е. Kharlachev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Russian Federation, Moscow

V. D. Stepakhin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Russian Federation, Moscow

References

  1. T. E. Gayanova, E. V. Voronova, S. V. Kuznetsov, E. A. Obraztsova, N.N. Skvortsova, A. S. Sokolov, I. R. Nugaev and V.D. Stepakhin, High Energy Chem. 57, 1, 53 (2023).
  2. N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin et al., Chem. Phys. 516, 63 (2019).
  3. S. I. Popel, L. M. Zelenyi, A. P. Golub and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).
  4. И. А. Кузнецов, А. В. Захаров, Л. М. Зеленый, С. И. Попель и др., Астрон. журн. 100, 1, 41 (2023).
  5. S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
  6. J. Williams, Journal of Plasma Physics 82(03) (2016).
  7. Y. Zeng, Zh. Ma, Y. Feng, Review of Scientific Instruments, 93 (3) (2022).
  8. Н. Н. Скворцова, В. Д. Степахин, Д. В. Малахов, Л. В. Колик, Е. М. Кончеков, Е. А. Образцова, А. С. Соколов, А. А. Сорокин, Н. К. Харчев и О. Н. Шишилов, Патент №2727958 Российская Федерация, рег. 28 июля 2020 г.
  9. Г. М. Батанов, Н. К. Бережецкая, В. Д. Борзосеков, Л. В. Колики др., Успехи прикладной физики 1, 5, 564 (2013).
  10. А. С. Соколов, Д. В. Малахов и Н.Н. Скворцова, Инженерная физика 11, 3 (2018).
  11. М. В. Тригуб, Д. В. Малахов, В. Д. Степахин, Г. С. Евтушенко, Д. А. Балабанов и Н. Н. Скворцова, Оптика атмосферы и океана 33, 3, 199 (2020).
  12. А. А. Летунов, Н. Н. Скворцова, И. Г. Рябикина, Г. М. Батанов, и др., Инженерная физика 10, 36 (2013).
  13. E.V. Voronova, A. V. Knyazev, A. A. Letunov, V. P. Logvinenko, N. N. Skvortsova, and V. D. Stepakhin, Physics of Atomic Nuclei. 84, 1761 (2021).
  14. ImageJ Independent Platform, https://imagej.nih.gov/ij/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup: 1 — gyrotron, 2 — focusing mirrors of the quasi-optical path, 3 — flat mirror, 4 — microwave calorimeter, 5 — quasi-optical microwave coupler, 6/7/8 — microwave detectors of incident, reflected, and transmitted radiation, 9 — plasma-chemical reactor, VN1 — industrial camera, VN2 — high-speed video camera.

Download (116KB)
3. Fig. 2. Obtained spectra for LMS-1D + 10% Fe mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

Download (165KB)
4. Fig. 3. Obtained spectra for LMS-1D + 10% Mg mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

Download (138KB)
5. Fig. 4. Cloud of glowing particles for LMS-1D + 10% Mg regolith mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

Download (203KB)
6. Fig. 5. Software-approximated particles levitating in the reactor volume for LMS-1D + 10% Fe mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

Download (169KB)
7. Fig. 6. Software-approximated particles levitating in the reactor volume for LMS-1D + 10% Mg mixture in argon atmosphere (pulse power — 400 kW, pulse duration — 6 ms).

Download (155KB)
8. Fig. 7. Dynamics of change in the number of observed particles in LMS-1D + 10% Fe and LMS-1D + 10% Mg mixtures for pulse power of 300 kW, duration — 6 ms.

Download (166KB)
9. Fig. 8. Dynamics of change in the number of observed particles for LMS-1D + 10% Fe and LMS-1D + 10% Mg mixtures for pulse power of 400 kW, duration — 6 ms.

Download (171KB)

Copyright (c) 2024 The Russian Academy of Sciences