STEPWISE OPENING OF CYCLIC SUBSTITUENTS OF BIS(OXONIUM) DERIVATIVES OF IRON(II) BIS(DICARBOLLIDE) BY PYRIDINE
- Autores: Bogdanova E.V1, Erdelyi K.E1,2, Anufriev S.A1, Suponitsky K.Y.1, Stogniy M.Y.1, Sivaev I.B1
-
Afiliações:
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- National Research University "Higher School of Economics" (HSE University)
- Edição: Volume 70, Nº 10 (2025)
- Páginas: 1324-1332
- Seção: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://pediatria.orscience.ru/0044-457X/article/view/697758
- DOI: https://doi.org/10.7868/S3034560X25100105
- ID: 697758
Citar
Texto integral
Resumo
The reaction of bis(dioxane) and bis(tetrahydropyran) derivatives of iron(II) bis(dicarbollide) [8,8'-{О(СН2СН2)2X}2-3,3'-Fe(1,2-C2B9H10)2] (X = О, СН2) with pyridine in an inert atmosphere has been studied. It was found that the ring-opening of oxonium cycles proceeds stepwise, with the formation of the corresponding mono- and dipyridinium iron(II) complexes. Using the bis(dioxane) dipyridinium derivative as an example, it was found that, when in solution, oxidation of the resulting products to the corresponding paramagnetic complexes of iron(III) is possible. This approach opens the way to obtain bifunctional iron bis(dicarbolide) derivatives with different substituents. The obtained compounds were characterized by multinuclear NMR and IR spectroscopy, as well as high-resolution mass spectrometry. The structure of the symmetrical dipyridinium iron(II) complex [8,8'-{С5H5NCH2CH2OCH2CH2O}2-3,3'-Fe(1,2-C2B9H10)2] was determined by single crystal X-ray diffraction.
Sobre autores
E. Bogdanova
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: bogdanovakatie@mail.ru
Moscow, Russia
K. Erdelyi
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; National Research University "Higher School of Economics" (HSE University)
Email: bogdanovakatie@mail.ru
Faculty of Chemistry
Moscow, RussiaS. Anufriev
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: bogdanovakatie@mail.ru
Moscow, Russia
K. Suponitsky
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: bogdanovakatie@mail.ru
Moscow, Russia
M. Stogniy
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: bogdanovakatie@mail.ru
Moscow, Russia
I. Sivaev
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bogdanovakatie@mail.ru
Moscow, Russia
Bibliografia
- Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. № 8. P. 977. https://doi.org/10.1039/B715363E.
- Sivaev I.B., Bregadze V.I. Boron Science. New Technologies and Applications / Ed. Hosmane N.S. Boca Raton: CRC Press, 2012. P. 623. https://doi.org/10.1201/b11199
- Друзина А.А., Шмалько А.В., Сисаев Н.Б., Брегадзе В.Н. // Успехи химии. 2021. Т. 90. № 7. C. 785.
- Ласькова Ю.Н., Серьохов А.А., Сиаев Н.Б. // Журн. неорган. химии. 2023. Т. 68. № 6. C. 701. https://doi.org/10.31857/S0044457X23600020
- Эрфел К.Э., Антонен А.А., Хидкова О.Б. и др. // Изв. Акад. наук. Сер. хим. 2023. № 4. C. 1059.
- Матвеев Е.Ю., Гараев Т.М., Новиков С.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 6. C. 752. https://doi.org/10.31857/S0044457X22602413
- Матвеев Е.Ю., Кубасов А.С., Ничуговский А.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 6. C. 724. https://doi.org/10.31857/S0044457X22602243
- Matveev E.Yu., Avdeeva V.V., Kubasov A.S. et al. // Inorganics. 2023. V. 11. № 4. P. 144. https://doi.org/10.3390/inorganics11040144
- Druzina A.A., Dudarova N.V., Ananyev I.V. et al. // Molecules. 2023. V. 28. № 18. P. 6636. https://doi.org/10.3390/molecules28186636
- Друзина А.А., Дударова Н.В., Сиаев Н.Б., Брегадзе В.Н. // Изв. Акад. наук. Сер. хим. 2023. № 9. C. 2083.
- Matveev E.Yu., Dorisova O.S., Avdeeva V.V. et al. // Molecules. 2023. V. 28. № 24. P. 8073. https://doi.org/10.3390/molecules28248073
- Okada S., Nishimura K., Alnaya Q. et al. // Mol. Pharmaceutics. 2023. V. 20. № 12. P. 6311. https://doi.org/10.1021/acs.molpharmaceut.3c00726
- Garvey T.M., Yadin I.I., Breslav N.V. et al. // Molecules. 2024. V. 29. № 24. P. 5886. https://doi.org/10.3390/molecules29245886
- Репинов В.М., Матвеев Е.Ю., Лисовский М.В. и др. // Изв. Акад. наук. Сер. хим. 2010. № 3. C. 538.
- Матвеев Е.Ю., Кубасов А.С., Разгоняева Г.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. C. 858. https://doi.org/10.7868/S0044457X15070107
- Stogniy M.Yu., Anufriev S.A., Bogdanova E.V. et al. // Dalton Trans. 2024. V. 53. № 7. P. 3363. https://doi.org/10.1039/D3DT03549B
- APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Semioshkin A., Nizhnik E., Godovikov I. et al. // J. Organomet. Chem. 2007. V. 692. № 19. P. 4020. https://doi.org/10.1016/j.jorganchem.2007.06.001
- Sivaev I.B., Starikova Z.A., Sjöberg S., Bregadze V.I. // J. Organomet. Chem. 2002. V. 649. № 1. P. 1. https://doi.org/10.1016/S0022-328X(01)01352-3
- Plések J., Grüner B., Macháček J. et al. // J. Organomet. Chem. 2007. V. 692. № 22. P. 4801. https://doi.org/10.1016/j.jorganchem.2007.07.026
- Hao E., Vicente M.G.H. // Chem. Commun. 2005. № 10. P. 1306. https://doi.org/10.1039/B415649H
- Hao E., Jensen T.J., Courtney B.H., Vicente M.G.H. // Bioconjugate Chem. 2005. V. 16. № 6. P. 1495. https://doi.org/10.1021/bc0502098
- Hussain S., Dong H., Zeng S. et al. // J. Mol. Liq. 2021. V. 336. P. 116362. https://doi.org/10.1016/j.molliq.2021.116362
- Anufriev S.A., Erokhina S.A., Supontisky K.Yu. et al. // J. Organomet. Chem. 2018. V. 865. P. 239. https://doi.org/10.1016/j.jorganchem.2018.04.019
- Anufriev S.A., Sivaev I.B., Supontisky K.Yu., Bregadze V.I. // J. Organomet. Chem. 2017. V. 849–850. P. 315. https://doi.org/10.1016/j.jorganchem.2017.03.025
- Anufriev S.A., Erokhina S.A., Supontisky K.Yu. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38–39. P. 4444. https://doi.org/10.1002/ejic.201700575
Arquivos suplementares
