Oxovanadium(IV) Complexes with Pyridinedicarboxylate Anions and Terpyridine: Synthesis, Structure, and EPR Spectra

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The reactions of oxovanadium(IV) sulfate with potassium salts of 2,3-, 2,4-, 2,5-, 3,4-, and 3,5-pyridinedicarboxylic acids (PdcH2) and 2,2’:6’,2’’-terpyridine (Terpy) resulted in the formation of mononuclear heteroleptic complexes [VO(2,3-Pdc)(Terpy)] : 7H2O (I), [VO(2,4-Pdc)(Terpy)] : 5H2O (II), [VO(2,5-Pdc)(Terpy)] : 3H2O (III), [VO(3,4-Pdc)(Terpy)(H2O)] : 4H2O (IV), [VO(3,5-Pdc)(Terpy)(H2O)] : 7H2O (V) и [VO(3,5-PdcH)(Terpy)(H2O)](3,5-PdcH) : 2H2O (VI), respectively. The structures of compounds I–VI were determined by single-crystal X-ray diffraction (CCDC nos. 2326828 (I), 2326829 (II), 2326830 (III), 2326831 (IV), 2326832 (V), 2440463 (VI)). In the structures of I–III, the acid dianions act as chelating ligands via the pyridine N atom and the O atom of one carboxyl group, while in compounds IV–VI, the acid anion is coordinated in the monodentate fashion. In the crystal packing of compounds I–III, intermolecular π–π-interactions between the heteroatomatic moieties of N-donor ligands are present, while in complexes IV and V, the intermolecular π–π-interactions involve also the pyridyl rings of dicarboxylate anions. Polycrystalline samples and solutions of complexes III and IV were characterized by EPR spectroscopy.

Sobre autores

E. Bazhina

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: bazhina@igic.ras.ru
ORCID ID: 0000-0003-4722-0599
PhD in Chemistry, Senior Researcher Moscow, Russian Federation

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: shmelevma@yandex.ru
ORCID ID: 0000-0002-7345-6856
PhD in Chemistry, Researcher Moscow, Russian Federation

N. Gogoleva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gogolevanv@inbox.ru
ORCID ID: 0000-0002-3490-2833
PhD in Chemistry, Senior Researcher Moscow, Russian Federation

E. Ugolkova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: tipperiri@yandex.ru
ORCID ID: 0000-0001-8192-7200
PhD in Physics and Mathematics, Senior Researcher Moscow, Russian Federation

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: nnefimov@yandex.ru
ORCID ID: 0000-0003-4651-7948
PhD in Chemistry, Leading Researcher Moscow, Russian Federation

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: mkiskin@igic.ras.ru
ORCID ID: 0000-0002-8782-1308
Dr. Sci. in Chemistry, Professor of the Russian Academy of Sciences, Leading Researcher Moscow, Russian Federation

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ilerem@igic.ras.ru
ORCID ID: 0000-0001-6861-1404
Dr. Sci. in Chemistry, Full Member of the Russian Academy of Sciences, Head of Laboratory, Chief Researcher Moscow, Russian Federation

Bibliografia

  1. Larrea E.S., de Luis R.F., Orive J. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. P. 4699. https://doi.org/10.1002/ejic.201500431
  2. Cancino P., Vega A., Santiago-Portillo A. et al. // Catal. Sci. Technol. 2016. V. 6. P. 3727. https://doi.org/10.1039/C5CY01448D
  3. Cancino P., Santibanez L., Fuentealba P. et al. // Dalton Trans. 2018. V. 47. P. 13360. https://doi.org/10.1039/C8DT01913D
  4. Correia I., Adao P., Roy S. et al. // J. Inorg. Biochem. 2014. V. 141. P. 83. https://doi.org/10.1016/j.jinorgbio.2014.07.019
  5. Noro S., Miyasaka H., Kitagawa S. et al. // Inorg. Chem. 2005. V. 44. P. 133. https://doi.org/10.1021/ic049550e
  6. Humphrey S.M., Angliss T.J.P., Aransay M. et al. // Z. Anorg. Allg. Chem. 2007. V. 633. P. 2342. https://doi.org/10.1002/zaac.200700235
  7. Huang Y.-G., Wu M.-Y., Wei W. et al. // J. Mol. Struct. 2008. V. 885. P. 23. https://doi.org/10.1016/j.molstruc.2007.10.002
  8. Chen Y., Gao Q., Chen W. et al. // Chem. Asian. J. 2015. V. 10. P. 411. https://doi.org/10.1002/asia.201403025
  9. Demir S., Cepni H.M., Bilgin N. et al. // Polyhedron. 2016. V. 115. P. 236. https://doi.org/10.1016/j.poly.2016.05.008
  10. Jaddou E.C., LaDuca R.L. // Polyhedron. 2020. V. 180. P. 114427. https://doi.org/10.1016/j.poly.2020.114427
  11. Semerci F., Yeşilel O.Z., Yuksel F., Şahin O. // Inorg. Chem. Commun. 2015. V. 62. P. 29. https://doi.org/10.1016/j.inoche.2015.10.016
  12. Maji T.K., Mostafa G., Matsuda R., Kitagawa S. // J. Am. Chem. Soc. 2005. V. 127. P. 17152. https://doi.org/10.1021/ja0561439
  13. Kanoo P., Matsuda R., Kitaura R. et al. // Inorg. Chem. 2012. V. 51. P. 9141. https://doi.org/10.1021/ic300695v
  14. Li X.-L., Liu G.-Z., Xin L.-Y., Wang L.-Y. // CrystEngComm. 2012. V. 14. P. 1729. https://doi.org/10.1039/C1CE06050C
  15. Liu Y.-Y., Liu B., Yang J., Ma J.-F. // Polyhedron 2013. V. 56. P. 96. https://doi.org/10.1016/j.poly.2013.03.060
  16. Wen L.-L., Lu Z.-D., Ren X.-M. et al. // Cryst. Growth Des. 2009. V. 9. P. 227. https://doi.org/10.1021/cg800329k
  17. Voda I., Makhloufi G., Druta V. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 526. https://doi.org/10.1016/j.ica.2018.06.038
  18. Shit S., Chakraborty J., Sen S. et al. // J. Mol. Struct. 2008. V. 891. P. 19. https://doi.org/10.1016/j.molstruc.2008.02.027
  19. Shit S., Chakraborty J., Howard J.A.K. et al. // J. Struct. Chem. 2008. V. 19. P. 553. https://doi.org/10.1007/s11224-008-9324-9
  20. Qin C., Wang X., Wang E., Xu L. // J. Mol. Struct. 2005. V. 738. P. 91. https://doi.org/10.1016/j.molstruc.2004.11.039
  21. Zhou Y., Yue C., Yuan D. et al. // Eur. J. Inorg. Chem. 2006. V. 2006. P. 4852. https://doi.org/10.1002/ejic.200600539
  22. Yan S., Li X., Zheng X. // J. Mol. Struct. 2009. V. 929. P. 105. https://doi.org/10.1016/j.molstruc.2009.04.012
  23. Zhou X., Guo X., Liu L. et al. // Crystals. 2019. V. 9. P. 166. https://doi.org/10.3390/cryst9030166.
  24. Pinto C.B., Rodrigues B.L. // J. Struct. Chem. 2020. V. 61. P. 274. https://doi.org/10.1134/S0022476620020122
  25. Yang Y., Ren G., Li W. et al. // Polyhedron. 2020. V. 185. P. 114599. https://doi.org/10.1016/j.poly.2020.114599
  26. Zhao Y.-H., Su Z.-M., Fu Y.-M. et al. // Polyhedron. 2008. V. 27. P. 583. https://doi.org/10.1016/j.poly.2007.10.020
  27. Zhang X., Huang D., Chen C. et al. // Inorg. Chem. Commun. 2005. V. 8. P. 22. https://doi.org/10.1016/j.inoche.2004.10.014
  28. Mahata P., Natarajan S. // Eur. J. Inorg. Chem. 2005. V. 2005. P. 2156. https://doi.org/10.1002/ejic.200400937
  29. Wei Y., Hou H., Li L. et al. // Cryst. Growth Des. 2005. V. 5. P. 1405. https://doi.org/10.1021/cg049596i.
  30. Tu B.-T., Zhu H.-L., He G. et al. // Russ. J. Coord. Chem. 2011. V. 37. P. 696. https://doi.org/10.1134/S1070328411080112
  31. Shi F.-N., Han Y.-F., Liu C.-B. // J. Chem. Crystallogr. 2012. V. 42. P. 438. https://doi.org/10.1007/s10870-011-0265-6
  32. Colak A.T., Akduman D., Yeşilel O.Z. et al. // Transit. Met. Chem. 2009. V. 34. P. 861. https://doi.org/10.1007/s11243-009-9275-z
  33. Shi Z., Li L., Niu S. et al. // Inorg. Chim. Acta. 2011. V. 368. P. 101. https://doi.org/10.1016/j.ica.2010.12.049
  34. Doğan D., Colak T.A., Şahin O. et al. // Polyhedron. 2015. V. 93. P. 37. https://doi.org/10.1016/j.poly.2015.03.033
  35. Li X.-M., Wang Q.-W., Cui Y.-C. et al. // Chin. J. Struct. Chem. 2009. V. 28. P. 1317.
  36. Hosseini-Hashemi Z., Mirzaei M., Eshtiagh-Hosseini H. et al. // J. Coord. Chem. 2018. V. 71. P. 4058. https://doi.org/10.1080/00958972.2018.1539712
  37. Lush S.F. // Acta Crystallogr. E. 2001. V. 67. P. m278. https://doi.org/10.1107/S1600536811003059
  38. Wang P., Moorefield C.N., Panzer M., Newkome G.R. // Chem. Commun. 2005. V. 2005. P. 4405. https://doi.org/ 10.1039/B505327G
  39. Wang P., Moorefield C.N., Panzner M., Newkome G.R. // Cryst. Growth Des. 2006. V. 6. P. 1563. https://doi.org/10.1021/cg060086t
  40. Jakusch T., Kiss T. // Coord. Chem. Rev. 2017. V. 351. P. 118. https://doi.org/10.1016/j.ccr.2017.04.007
  41. Komeili G., Ghasemi F., Rezvani A.R. et al. // Arch. Physiol. Biochem. 2019. V. 128. P. 80. https://doi.org/10.1080/13813455.2019.1663218
  42. Choroba K., Filipe B., Świtlicka A. et al. // J. Med. Chem. 2023. V. 66. P. 8580. https://doi.org/10.1021/acs.jmedchem.3c00255
  43. Banik B., Sasmal P.K., Roy S. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 1425. https://doi.org/10.1002/ejic.201001097
  44. Fik M.A., Gorczyński A., Kubicki M. et al. // Polyhedron. 2015. V. 97. P. 83. https://doi.org/10.1016/j.poly.2015.05.021
  45. Chatterjee M., Ghosh S., Wu B.-M., Mak T.C.W. // Polyhedron. 1998. V. 17. P. 1369. https://doi.org/10.1016/S0277-5387(97)00282-9
  46. Aghabozorg H., Tavakoli E., Mirzaei M. // Acta Crystallogr. E. 2011. V. 67. P. m248. https://doi.org/10.1107/S1600536811002376
  47. Wang Y., Lin X.-M., Bai F.-Y., Sun L.-X. // J. Mol. Struct. 2017. V. 1149. P. 379. https://doi.org/10.1016/j.molstruc.2017.07.015
  48. TOPAS Software. Version 4.2. Karlsruhe: Bruker AXS, 2009.
  49. Ракитин Ю.В., Ларин Г.М., Минин В.В. Интерпретация спектров ЭПР координационных соединений. М.: Наука, 1993. 339 с.
  50. Lebedev Ya.S., Muromtsev V.I. EPR and Relaxation of Stabilized Radicals. M.: Khimiya, 1972. 256 p. (in Russ.)
  51. Wilson R., Kivelson D.J. // J. Chem. Phys. 1966. V. 44. P. 154. https://doi.org/10.1063/1.1726439
  52. SMART (сontrol) and SAINT (integration) Software. Version 5.0. Madison (WI, USA): Bruker AXS, Inc., 1997.
  53. Sheldrik G.M. SADABS. Program for scanning and correction of area detector data. Gottingen (Germany): Univ. of Gottingen, 2004.
  54. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  55. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  56. Bazhina E.S., Nikiforova M.E., Aleksandrov G.G. et al. // Russ. Chem. Bull. 2012. V. 61. P. 1084. https://doi.org/10.1007/s11172-012-0147-x
  57. Pifferi C., Picchi M.P., Cini R. // Polyhedron. 2000. V. 19. P. 69. https://doi.org/10.1016/S0277-5387(99)00325-3
  58. Hong X.-L., Liu L.-J., Lu W.-G. et al. // Trans. Met. Chem. 2017. V. 42. P. 459. https://doi.org/10.1007/s11243-017-0150-z
  59. Jin W.-T., Zhou Z.-H. // J. Inorg. Biochem. 2020. V. 208. P. 111086 https://doi.org/10.1016/j.jinorgbio.2020.111086.
  60. Yucesan G., Armatas N.G., Zubieta J. // Inorg. Chim. Acta. 2006. V. 359. P. 4557. https://doi.org/10.1016/j.ica.2006.07.009
  61. Di Giuseppe A., Taglieri F., Taydakov I.V. et al. // Catal. Today 2023. V. 423. P. 114005. https://doi.org/10.1016/j.cattod.2023.01.012

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025