Dysanapsis and its role in the occurrence of chronic obstructive respiratory diseases in children and adults: A review

Cover Page

Cite item

Full Text

Abstract

The literature review, written on the basis of world literature data and the results of the authors' own research, is devoted to an important pathogenetic mechanism of development and progression of chronic obstructive pulmonary diseases in children and adults – dysanapsis, which is understood as a mismatch in the size or growth of the airways to the volume or growth of the lung parenchyma, while the diameter of the airways is disproportionately smaller than the volume of the lung parenchyma. Modern methods of diagnosis of dysanapsis are based on the use of computed tomography of the chest organs, spirometry (accounting for the volume of forced exhalation in 1 second, forced vital capacity of the lungs, calculation of the coefficient of dysanapsis). Dysanapsis, which has genetic and age-dependent mechanisms of formation, makes an important contribution to the development of bronchial hyperreactivity and bronchial asthma, especially in combination with overweight and obesity, determining the uncontrolled course of asthma. The phenomenon of dysanapsis can be explained by the clinical and functional indicators of the respiratory system (hypoxemia, bronchial obstruction) in premature infants, including patients with bronchopulmonary dysplasia, patients with postinfectious obliterating bronchiolitis. In addition, imbalance is an important pathogenetic component of chronic obstructive pulmonary disease, causing the defeat of patients with this disease, regardless of the presence and length of smoking.

Full Text

Restricted Access

About the authors

Regina N. Khramova

Volga Region Research Medical University

Author for correspondence.
Email: reg1705@yandex.ru
ORCID iD: 0000-0002-2396-5054

Graduate Student, Volga Region Research Medical University

Russian Federation, Nizhny Novgorod

Tatyana I. Eliseeva

Volga Region Research Medical University

Email: eliseevati@yandex.ru
ORCID iD: 0000-0002-1769-3670

D. Sci. (Med.), Assoc. Prof., Volga Region Research Medical University

Russian Federation, Nizhny Novgorod

Elena V. Tush

Volga Region Research Medical University

Email: ltus@mail.ru
ORCID iD: 0000-0002-5961-9794

Cand. Sci. (Med.), Volga Region Research Medical University

Russian Federation, Nizhny Novgorod

Maxim A. Karpenko

People’s Friendship University of Russia (RUDN University)

Email: karpenko.ma@mail.ru
ORCID iD: 0000-0001-7937-722X

Cand. Sci. (Med.), People’s Friendship University of Russia (RUDN University)

Russian Federation, Moscow

Dmitriy Yu. Ovsyannikov

People’s Friendship University of Russia (RUDN University)

Email: mdovsyannikov@yahoo.com
ORCID iD: 0000-0002-4961-384X

D. Sci. (Med.), People’s Friendship University of Russia (RUDN University)

Russian Federation, Moscow

References

  1. GBD 2017: a fragile world. Lancet. 2018;392(10159):1683. doi: 10.1016/S0140-6736(18)32858-7
  2. Овсянников Д.Ю., Фурман Е.Г., Елисеева Т.И. Бронхиальная астма у детей: монография. Под ред. Д.Ю. Овсянникова. М.: РУДН, 2019 [Ovsiannikov DIu, Furman EG, Eliseeva TI. Bronkhial'naia astma u detei: monografiia. Pod red. DIu Ovsiannikova. Moscow: RUDN, 2019 (in Russian)].
  3. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333. doi: 10.1016/j.smim.2019.101333
  4. Alobaidi AH, Alsamarai AM, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem. 2021;20(4):317-32. doi: 10.2174/1871523020666210920100707
  5. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541-58. doi: 10.1042/CS20160487
  6. Givi ME, Redegeld FA, Folkerts G, Mortaz E. Dendritic cells in pathogenesis of COPD. Curr Pharm Des. 2012;18(16):2329-35. doi: 10.2174/138161212800166068
  7. Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54(2):1900651. doi: 10.1183/13993003.00651-2019
  8. Habib N, Pasha MA, Tang DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells. 2022;11(17):2764. doi: 10.3390/cells11172764
  9. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol. 1974;37(1):67-74. doi: 10.1152/jappl.1974.37.1.67
  10. Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis. 1980;121(2):339-42. doi: 10.1164/arrd.1980.121.2.339
  11. Forno E, Celedón JC. The effect of obesity, weight gain, and weight loss on asthma inception and control. Curr Opin Allergy Clin Immunol. 2017;17(2):123-30. doi: 10.1097/ACI.0000000000000339
  12. Deolmi M, Decarolis NM, Motta M, et al. Early Origins of Chronic Obstructive Pulmonary Disease: Prenatal and Early Life Risk Factors. Int J Environ Res Public Health. 2023;20(3):2294. doi: 10.3390/ijerph20032294
  13. Vameghestahbanati M, Hiura GT, Barr RG, et al. CT-Assessed Dysanapsis and Airflow Obstruction in Early and Mid Adulthood. Chest. 2022;161(2):389-91. doi: 10.1016/j.chest.2021.08.038
  14. Bourbeau J, Doiron D, Biswas S, et al; CanCOLD Collaborative Research Group and the Canadian Respiratory Research Network. Ambient Air Pollution and Dysanapsis: Associations with Lung Function and Chronic Obstructive Pulmonary Disease in the Canadian Cohort Obstructive Lung Disease Study. Am J Respir Crit Care Med. 2022;206(1):44-55. doi: 10.1164/rccm.202106-1439OC
  15. Maetani T, Tanabe N, Terada S, et al. Physiological impacts of computed tomography airway dysanapsis, fractal dimension, and branch count in asymptomatic never smokers. J Appl Physiol (1985). 2023;134(1):20-7. doi: 10.1152/japplphysiol.00385.2022
  16. Forno E, Weiner DJ, Mullen J, et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am J Respir Crit Care Med. 2017;195(3):314-23. doi: 10.1164/rccm.201605-1039OC
  17. Strunk RC, Weiss ST, Yates KP, et al; CAMP Research Group. Mild to moderate asthma affects lung growth in children and adolescents. J Allergy Clin Immunol. 2006;118(5):1040-7. doi: 10.1016/j.jaci.2006.07.053
  18. Weiss ST, Tosteson TD, Segal MR, et al. Effects of asthma on pulmonary function in children. A longitudinal population-based study. Am Rev Respir Dis. 1992;145(1):58-64. doi: 10.1164/ajrccm/145.1.58
  19. Jones MH, Roncada C, Fernandes MTC, et al. Asthma and Obesity in Children Are Independently Associated with Airway Dysanapsis. Front Pediatr. 2017;5:270. doi: 10.3389/fped.2017.00270
  20. Храмова Р.Н., Елисеева Т.И., Овсянников Д.Ю., и др. Влияние возраста и антропометрических характеристик на встречаемость дисанапсиса у детей и подростков с бронхиальной астмой. Педиатрия им. Г.Н. Сперанского. 2023;102(2):52-6 [Khramova RN, Eliseeva TI, Ovsyannikov DYu, et al. Impact of age and anthropometric features on the prevalence of disanapsis in children and adolescents with bronchial asthma. Pediatria n.a. G.N. Speransky. 2023;102(2):52-6 (in Russian)]. doi: 10.24110/0031-403X-2023-102-2-52-56
  21. Marillier M, Bernard AC, Reimao G, et al. Breathing at Extremes: The Restrictive Consequences of Super- and Super-Super Obesity in Men and Women. Chest. 2020;158(4):1576-85. doi: 10.1016/j.chest.2020.04.006
  22. Jung Y, Jean T, Morphew T, Galant SP. Peripheral Airway Impairment and Dysanapsis Define Risk of Uncontrolled Asthma in Obese Asthmatic Children. J Allergy Clin Immunol Pract. 2022;10(3):759-67.e1. doi: 10.1016/j.jaip.2021.09.029
  23. Arismendi E, Bantulà M, Perpiñá M, Picado C. Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. J Clin Med. 2020;9(11):3762. doi: 10.3390/jcm9113762
  24. Forno E, Han YY, Mullen J, Celedón JC. Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis. J Allergy Clin Immunol Pract. 2018;6(2):570-81.e10. doi: 10.1016/j.jaip.2017.07.010
  25. Khramova RN, Tush EV, Khramov AA, et al. Relationship of Nutritional Status and Spirometric Parameters in Children with Bronchial Asthma. Sovrem Tekhnologii Med. 2021;12(3):12-23. doi: 10.17691/stm2020.12.3.02
  26. Храмова Р.Н., Туш Е.В., Овсянников Д.Ю., и др. Взаимосвязь индекса массы тела, относительного индекса массы тела и показателей бронхиальной проходимости у детей с бронхиальной астмой. Педиатрия им. Г.Н. Сперанского. 2021;100(5):21-7 [Khramova RN, Tush EV, Ovsyannikov DYu, et al. Connection between body mass index, relative body mass index and bronchial patency indicators in children with bronchial asthma. Pediatria n.a. G.N. Speransky. 2021;100(5):21-7 (in Russian)]. doi: 10.24110/0031-403X-2021-100-5-21-27
  27. Храмова Р.Н., Елисеева Т.И., Туш Е.В., и др. Влияние абдоминального типа ожирения на параметры внешнего дыхания у детей и подростков с бронхиальной астмой. Педиатрия им. Г.Н. Сперанского. 2022;101(2):12-8 [Khramova RN, Eliseeva TI, Tush EV, et al. The effect of abdominal obesity and external respiration function in children and adolescents with bronchial asthma. Pediatria n.a. G.N. Speransky. 2022;101(2):12-8 (in Russian)]. doi: 10.24110/0031-403X-2022-101-2-12-18
  28. Bekkers MB, Wijga AH, Gehring U, et al. BMI, waist circumference at 8 and 12 years of age and FVC and FEV1 at 12 years of age; the PIAMA birth cohort study. BMC Pulm Med. 2015;15:39. doi: 10.1186/s12890-015-0032-0
  29. Ekström S, Hallberg J, Kull I, et al. Body mass index status and peripheral airway obstruction in school-age children: a population-based cohort study. Thorax. 2018;73(6):538-45. doi: 10.1136/thoraxjnl-2017-210716
  30. Strunk RC, Colvin R, Bacharier LB, et al; Childhood Asthma Management Program Research Group. Airway Obstruction Worsens in Young Adults with Asthma Who Become Obese. J Allergy Clin Immunol Pract. 2015;3(5):765-71.e2. doi: 10.1016/j.jaip.2015.05.009
  31. Forno E, Young OM, Kumar R, et al. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics. 2014;134(2):e535-46. doi: 10.1542/peds.2014-0439
  32. Dumas O, Varraso R, Gillman MW, et al. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy. 2016;71(9):1295-304. doi: 10.1111/all.12876
  33. Huang K, Rabold R, Abston E, et al. Effects of leptin deficiency on postnatal lung development in mice. J Appl Physiol (1985). 2008;105(1):249-59. doi: 10.1152/japplphysiol.00052.2007
  34. Kirwin SM, Bhandari V, Dimatteo D, et al. Leptin enhances lung maturity in the fetal rat. Pediatr Res. 2006;60(2):200-4. doi: 10.1203/01.pdr.0000227478.29271.52
  35. Hansel NN, Gao L, Rafaels NM, et al. Leptin receptor polymorphisms and lung function decline in COPD. Eur Respir J. 2009;34(1):103-10. doi: 10.1183/09031936.00120408
  36. van den Borst B, Souren NY, Loos RJ, et al. Genetics of maximally attained lung function: a role for leptin? Respir Med. 2012;106(2):235-42. doi: 10.1016/j.rmed.2011.08.001
  37. Torday JS, Sun H, Wang L, et al. Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L405-10. doi: 10.1152/ajplung.2002.282.3.L405
  38. Parker AL, Abu-Hijleh M, McCool FD. Ratio between forced expiratory flow between 25% and 75% of vital capacity and FVC is a determinant of airway reactivity and sensitivity to methacholine. Chest. 2003;124(1):63-9. doi: 10.1378/chest.124.1.63
  39. Kraemer R, Smith HJ, Sigrist T, et al. Diagnostic accuracy of methacholine challenge tests assessing airway hyperreactivity in asthmatic patients – a multifunctional approach. Respir Res. 2016;17(1):154. doi: 10.1186/s12931-016-0470-0
  40. Litonjua AA, Sparrow D, Weiss ST. The FEF25-75/FVC ratio is associated with methacholine airway responsiveness. The normative aging study. Am J Respir Crit Care Med. 1999;159(5 Pt. 1):1574-9. doi: 10.1164/ajrccm.159.5.9803063
  41. Abman SH, Bancalari E, Jobe A. The Evolution of Bronchopulmonary Dysplasia after 50 Years. Am J Respir Crit Care Med. 2017;195(4):421-4. doi: 10.1164/rccm.201611-2386ED
  42. Овсянников Д.Ю., Бойцова Е.В., Давыдова И.В., и др. Бронхолегочная дисплазия: от Норсвея до наших дней: монография. Под ред. Д.Ю. Овсянникова. М.: РУДН, 2016 [Ovsiannikov DIu, Boitsova EV, Davydova IV, et al. Bronkholegochnaia displaziia: ot Norsveia do nashikh dnei: monografiia. Pod red. DIu Ovsiannikova. Moscow: RUDN, 2016 (in Russian)].
  43. Duke JW, Gladstone IM, Sheel AW, Lovering AT. Premature birth affects the degree of airway dysanapsis and mechanical ventilatory constraints. Exp Physiol. 2018;103(2):261-75. doi: 10.1113/EP086588
  44. Овсянников Д.Ю., Дегтярева Е.А., Мирошниченко В.П., и др. Факторы риска, диагностика, скрининг и терапия легочной гипертензии у детей с бронхолегочной дисплазией. Доктор.Ру. 2022;21(7):12-9 [Ovsyannikov DYu, Degtyareva EA, Miroshnichenko VP, et al. Risk factors, diagnosis, screening and therapy of pulmonary hypertension in children with bronchopulmonary dysplasia. Doctor.Ru. 2022;21(7):12-9 (in Russian)]. doi: 10.31550/1727-2378-2022-21-7-12-19
  45. Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1101-53. doi: 10.1152/ajplung.00343.2017
  46. Nelin LD, Kielt MJ, Jebbia M, et al. Bronchodilator responsiveness and dysanapsis in bronchopulmonary dysplasia. ERJ Open Res. 2022;8(3):00682-2021. doi: 10.1183/23120541.00682-2021
  47. Кравчук Д.А., Овсянников Д.Ю. Эпидемиология бронхиальной астмы у недоношенных детей: метаанализ. Аллергология и иммунология в педиатрии. 2019;3(58):27-32 [Kravchuk DA, Ovsyannikov DYu. Epidemiology of bronchial asthma in prematural children: meta-analysis. Allergologiia i immunologiia v pediatrii. 2019;3(58):27-32 (in Russian)].
  48. Кравчук Д.А., Овсянников Д.Ю., Болибок А.М., и др. Частота, факторы риска, особенности бронхиальной астмы у детей с бронхолегочной дисплазией и ведение коморбидных пациентов. Неонатология: новости, мнения, обучение. 2019;7(3):27-39 [Kravchuk DA, Ovsyannikov DYu, Bolibok AM, et al. Frequency, risk factors, features of bronchial asthma in children with bronchopulmonary dysplasia and management of comorbid patients. Neonatologiia: novosti, mneniia, obuchenie. 2019;7(3):27-39 (in Russian)]. doi: 10.24411/2308-2402-2019-13004
  49. Karnaushkina MA, Strutinskaya AD, Ovsyannikov DYu. Prematurity and Early Childhood Infection of Lower Respiratory Tract as Risk Factors of Developing Chronic Obstructive Bronchopulmonary Pathology in Adults. Pediatric Predictors of the Development of Chronic Obstructive Bronchopulmonary Pathology in Adults. 2017;9(1):129-33. doi: 10.17691/stm2017.9.1.17
  50. Петряйкина Е.С., Бойцова Е.В., Овсянников Д.Ю., и др. Современные представления об облитерирующем бронхиолите у детей. Педиатрия. Журнал им. Г.Н. Сперанского. 2020;99(2):255-62 [Petriaikina ES, Boitsova EV, Ovsyannikov DYu, et al. Modern ideas about obliterating bronchiolitis in children. Pediatriia. Zhurnal im. G.N. Speranskogo. 2020;99(2):255-62 (in Russian)]. doi: 10.24110/0031-403X-2020-99-2-255-262
  51. Colom AJ, Maffey A, Garcia Bournissen F, Teper A. Pulmonary function of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up. Thorax. 2015;70(2):169-74. doi: 10.1136/thoraxjnl-2014-205328
  52. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med. 2017;195(5):557-82. doi: 10.1164/rccm.201701-0218PP
  53. Smith BM, Hoffman EA, Barr RG. Dysanapsis and COPD-Reply. JAMA. 2020;324(15):1572. doi: 10.1001/jama.2020.15654
  54. Adeloye D, Chua S, Lee C, et al; Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015;5(2):020415. doi: 10.7189/jogh.05.020415
  55. Tan WC, Sin DD, Bourbeau J, et al; CanCOLD Collaborative Research Group. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax. 2015;70(9):822-9. doi: 10.1136/thoraxjnl-2015-206938

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies