Clinical studies of the human microbiome. Strategies for applying methods and translating results into clinical practice: A review

Cover Page

Cite item

Full Text

Abstract

Current omics methods, which are essential for scientific research, are overviewed. These methods enable studies of the mechanisms of clinical manifestations by analyzing the relationship between the microbiota characteristics and clinical parameters. To represent the complex interactions between the microbiome and host metabolism, metagenomics and metabolomics techniques that contribute to the search for new therapeutic approaches are most relevant. Based on the metagenomic data, the associated taxa are searched, and the metabolic profile indicates the result of the activity of the microbial community. The characteristics of technologies for studying metagenomes using the amplicon sequencing method are considered, and the depth of identification of microorganisms, the level of sequencing errors and the preference in terms of cost are evaluated. Studying the evolution of pathogens and metabolic processes, expressed genes, and determinants of antibiotic resistance contributes to the development of rational strategies for disease therapy and control of the spread of infectious diseases. In recent years, the number of scientific projects in the field of microbiota research has been steadily increasing, which necessitates the need to raise physicians' awareness of modern methods and research approaches in order to apply relevant data in practical work.

Full Text

Restricted Access

About the authors

Stanislav I. Koshechkin

Nobias Technologies LLC

Author for correspondence.
Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-7389-0476

Cand. Sci. (Med.)

 

Russian Federation, Moscow

Vera E. Odintsova

Nobias Technologies LLC

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0003-1897-4033

Сhief bioinformatician

Russian Federation, Moscow

Alexander V. Karasev

Laboratory "ABT"

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0001-7484-4992

Chief Executive Officer

Russian Federation, Moscow

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0003-4200-4598

Sci. (Med.), Prof.

 

Russian Federation, Moscow

Irina V. Berezhnaya

Russian Medical Academy of Continuous Professional Education

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-2847-6268

Cand. Sci. (Med.)

Russian Federation, Moscow

Olesya V. Pervishko

Kuban State Medical University

Email: ole-pervishko@yandex.ru
ORCID iD: 0000-0003-1083-2807

Cand. Sci. (Med.), Assoc. Prof.

Russian Federation, Krasnodar

Anastasiya E. Kuchina

Russian Medical Academy of Continuous Professional Education

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-8998-264X

pediatrician

 

Russian Federation, Moscow

Anastasiya E. Yudina

Bauman City Clinical Hospital №29

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-6920-8024

Department Head

Russian Federation, Moscow

Irina S. Kuznetsova

Russian Medical Academy of Continuous Professional Education

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0001-5164-682X

Assistant

Russian Federation, Moscow

Diana K. Dmitrieva

Russian Medical Academy of Continuous Professional Education

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-1593-0732

Graduate Student

Russian Federation, Moscow

Yana V. Orobinskaya

Russian Medical Academy of Continuous Professional Education

Email: St.Koshechkin@gmail.com
ORCID iD: 0009-0005-2121-4010

Graduate Student

Russian Federation, Moscow

Liudmila S. Serikova

National Medical Research Center for High Medical Technologies – Vishnevsky Central Military Clinical Hospital

Email: St.Koshechkin@gmail.com

pediatrician

Russian Federation, Moscow

Anastasia V. Makhaeva

Russian Medical Academy of Continuous Professional Education; Children's City Polyclinic №140

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-0006-5889

Graduate Student, Russian Medical Academy of Continuous Professional Education, pediatrician, Department Head, Children's City Polyclinic №140

Russian Federation, Moscow; Moscow

Vladimir A. Romanov

Nobias Technologies LLC

Email: St.Koshechkin@gmail.com
ORCID iD: 0000-0002-7540-5884

clinical research manager

Russian Federation, Moscow

References

  1. Overmann J, Abt B, Sikorski J. Present and Future of Culturing Bacteria. Annu Rev Microbiol. 2017;71:711-30. doi: 10.1146/annurev-micro-090816-093449
  2. Proctor LM. The National Institutes of Health Human Microbiome Project. Semin Fetal Neonatal Med. 2016;21(6):368-72. doi: 10.1016/j.siny.2016.05.002
  3. Chen C, Wang J, Pan D, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4(4):e315. doi: 10.1002/mco2.315
  4. Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110-30. doi: 10.1016/j.cmet.2017.05.008
  5. Aw W, Fukuda S. An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases. 2015;3(4):341-59. doi: 10.3390/diseases3040341
  6. Marco D. Metagenomics: Theory, Methods and Applications [Internet]. 2010. Available at: https://books.google.com/books/about/Metagenomics.html?hl=&id=8kl8zQEACAAJ. Accessed: 14.02.2023.
  7. Muzzey D, Evans EA, Lieber C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr Genet Med Rep. 2015;3(4):158-65. doi: 10.1007/s40142-015-0076-8
  8. Morganti S, Tarantino P, Ferraro E, et al. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv Exp Med Biol. 2019;1168:9-30. doi: 10.1007/978-3-030-24100-1_2
  9. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel). 2010;1(1):38-69. doi: 10.3390/genes1010038
  10. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1):1-8. doi: 10.1016/j.ygeno.2015.11.003
  11. Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348-65. doi: 10.1038/s41587-021-01108-x
  12. Meslier V, Quinquis B, Da Silva K, et al. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci Data. 2022;9(1):694. doi: 10.1038/s41597-022-01762-z
  13. Usyk M, Peters BA, Karthikeyan S, et al. Comprehensive evaluation of shotgun meta- genomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. Cell Rep Methods. 2023;3(1):100391. doi: 10.1016/j.crmeth.2022.100391
  14. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the Information Content of Shallow Shotgun Metagenomics. mSystems. 2018;3(6). doi: 10.1128/mSystems.00069-18
  15. de Muinck EJ, Trosvik P, Gilfillan GD, et al. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome. 2017;5(1):68. doi: 10.1186/s40168-017-0279-1
  16. Gao B, Chi L, Zhu Y, et al. An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules. 2021;11(4). doi: 10.3390/biom11040530
  17. Pugh J. The Current State of Nanopore Sequencing. Methods Mol Biol. 2023;2632:3-14. doi: 10.1007/978-1-0716-2996-3_1
  18. LeMay-Nedjelski L, Copeland J, Wang PW, et al. Methods and Strategies to Examine the Human Breastmilk Microbiome. Methods Mol Biol. 2018;1849:63-86. doi: 10.1007/978-1-4939-8728-3_5
  19. Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2021;12(5):315-30. doi: 10.1007/s13238-020-00724-8
  20. Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782-858. doi: 10.1099/ijsem.0.004107
  21. Cao Q, Sun X, Rajesh K, et al. Effects of Rare Microbiome Taxa Filtering on Statistical Analysis. Front Microbiol. 2020;11:607325. doi: 10.3389/fmicb.2020.607325
  22. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological). 1982;44(2):139-77.
  23. Pearson K. Mathematical contributions to the theory of evolution – on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London (1854–1905). 1896;60(1):489-98. doi: 10.1098/rspl.1896.0076. 10.1098/rspl.1896.0076
  24. Calle ML. Statistical Analysis of Metagenomics Data. Genomics Inform. 2019;17(1):e6. doi: 10.5808/GI.2019.17.1.e6
  25. Egozcue JJ, Pawlowsky-Glahn V. Groups of parts and their balances in compositional data analysis. Mathematical Geology. 2005;37:795-828. doi: 10.1007/s11004-005-7381-9
  26. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32-46. doi: 10.1111/j.1442-9993.2001.01070.pp.x
  27. Shapiro H, Suez J, Elinav E. Personalized microbiome-based approaches to metabolic syndrome management and prevention. J Diabetes. 2017;9(3):226-36. doi: 10.1111/1753-0407.12501
  28. Zhang F, Luo W, Shi Y, et al. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107(11):1755; author reply p.1755-6. doi: 10.1038/ajg.2012.251
  29. Collins DC. Pseudomembranous enterocolitis. Further observations on the value of donor fecal enemata as an adjunct in the treatment of pseudomembranous enterocolitis. Am J Proctol. 1960;2:389-91.
  30. Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med. 2016;11(1):56-61. doi: 10.1002/jhm.2449
  31. Marotz CA, Zarrinpar A. Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. Yale J Biol Med. 2016;89(3):383-8.
  32. Massimino L, Lamparelli LA, Houshyar Y, et al. The Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) framework. Nat Comput Sci. 2021;1(8):511-5. doi: 10.1038/s43588-021-00114-y
  33. Massimino L, Barchi A, Mandarino FV, et al. A multi-omic analysis reveals the esopha- geal dysbiosis as the predominant trait of eosinophilic esophagitis. J Transl Med. 2023;21(1):46. doi: 10.1186/s12967-023-03898-x
  34. Thomas AM, Fidelle M, Routy B, et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol. 2023;20(9):583-603. doi: 10.1038/s41571-023-00785-8
  35. World Gastroenterology Organisation practice guideline: Probiotics and prebiotics. Arab J Gastroenterol. 2009;10(1):33-42. doi: 10.1016/j.ajg.2009.03.001
  36. National Research Council (US) Committee on Metagenomics: Challenges and Functional Applications. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. Washington (DC): National Academies Press (US), 2007. doi: 10.17226/11902
  37. NIH HMP Working Group; Peterson J, Garges, S, Giovanni M et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317-23. doi: 10.1101/gr.096651.109
  38. MetaHIT. Available at: https://www.gutmicrobiotaforhealth.com/metahit. Accessed: 15.02.2023.
  39. Shi W, Qi H, Sun Q, et al. gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 2019;47(D1):D637-48. doi: 10.1093/nar/gky1008
  40. Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods. 2023;12(11). doi: 10.3390/foods12112140

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the sequencing by synthesis technology.

Download (76KB)
3. Fig. 2. Schematic diagram of the nanopore sequencing technology.

Download (60KB)
4. Fig. 3. The main characteristics of the microbiome, methods for their visualization and statistical analysis.

Download (87KB)
5. Fig. 4. Component-by-component and compositional comparison vs the comparison of the proportions of microbes on a contrived example of the antibiotic effect on a microbiota consisting of 3 microorganisms

Download (392KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies