Primary ciliary dyskinesia in children: clinical, laboratory-instrumental and genetic characteristics

Cover Page

Cite item

Full Text

Abstract

Background. Primary ciliary dyskinesia (PCD) is an orphan disease, and diagnosis is difficult because there is no gold standard for diagnosis.

Aim. Clinical, laboratory-instrumental, genetic characteristics of PCD in children.

Materials and methods. From 2009 to 2024, 31 patients with a genetically confirmed diagnosis of PCD were observed as part of a multicenter, open-ended, descriptive pilot longitudinal study. Examination methods: clinical and anamnestic method; X-ray examination and computed tomography of the chest organs and paranasal sinuses, tracheobronchoscopy; sputum/aspirate cultures of the tracheobroncheal tree with determination of sensitivity to antibiotics; transmission electron microscopy, high-speed video microscopy of the ciliated epithelium, cytological examination of bronchoalveolar lavage; monitoring computer pulse oximetry, echocardiography, audiometry, spirometry with bronchodilator test.

Results. Respiratory symptoms in the neonatal period have 80% of children with PCD, lateralization defects – 35%, congenital heart defects – 13%, bronchiectasis – 68%, purulent endobronchitis – 62%, year-round rhinitis – 84%, hearing loss, otitis – 65%. The average age of onset of symptoms was 1 [1; 1] weeks, and the verification of diagnosis was 6 [2,5; 8] years. The main pathogens of chronic respiratory infection with PCD are Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus. The most common cause of PCD was biallelic variants of the DNAH5 gene.

Conclusion. The diagnosis of PCD should be based on the application of the maximum number of diagnostic tests.

Full Text

Restricted Access

About the authors

Valeriia A. Strelnikova

Patrice Lumumba Peoples’ Friendship University of Russia; Morozov Children’s City Clinical Hospital

Author for correspondence.
Email: doc.strelnikova@mail.ru
ORCID iD: 0000-0002-2082-5531

Аssistant

Russian Federation, Moscow; Moscow

Dmitriy Y. Ovsyannikov

Patrice Lumumba Peoples’ Friendship University of Russia; Morozov Children’s City Clinical Hospital

Email: mdovsyannikov@yahoo.com
ORCID iD: 0000-0002-4961-384X

D. Sci. (Med.)

Russian Federation, Moscow; Moscow

Alexander А. Pushkov

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com
ORCID iD: 0000-0001-6648-2063

Cand. Sci. (Biol.)

Russian Federation, Moscow

Maxim I. Ayrapetyan

Sechenov First Moscow State Medical University (Sechenov University); Pirogov Russian National Research Medical University

Email: doc@pedklin.ru
ORCID iD: 0000-0002-0348-929X

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Elizaveta Е. Bragina

Bochkov Research Centre for Medical Genetics; Lomonosov Moscow State University

Email: registratura@med-gen.ru
ORCID iD: 0000-0002-8422-4962

D. Sci. (Biol.)

Russian Federation, Moscow; Moscow

Sergei А. Bulynko

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0002-5045-7661

otorhinolaryngologist

Russian Federation, Moscow

Anna Y. Voronkova

Bochkov Research Centre for Medical Genetics; Moscow Regional Consultative and Diagnostic Center for Children

Email: voronkova111@yandex.ru
ORCID iD: 0000-0002-8183-7990

Cand. Sci. (Med.)

Russian Federation, Moscow; Mytishchi

Valerii V. Gorev

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0001-8272-3648

Cand. Sci. (Med.)

Russian Federation, Moscow

Nikolay К. Grigoriadis

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0003-2066-9070

Department Head

Russian Federation, Moscow

Tatiana А. Gutyrchik

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0002-8421-1694

pulmonologist, Graduate Student

Russian Federation, Moscow

Evgenia V. Deeva

Morozov Children’s City Clinical Hospital

Email: evgenia.v.deeva@gmail.com
ORCID iD: 0000-0002-0352-2563

Cand. Sci. (Med.)

Russian Federation, Moscow

Svetlana V. Zhilina

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0003-0084-1013

Cand. Sci. (Med.)

Russian Federation, Moscow

Maxim А. Karpenko

Patrice Lumumba Peoples’ Friendship University of Russia; Morozov Children’s City Clinical Hospital

Email: karpenko.ma@mail.ru
ORCID iD: 0000-0001-7937-722X

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Nataliya I. Kolganova

Patrice Lumumba Peoples’ Friendship University of Russia; Morozov Children’s City Clinical Hospital

Email: nki97@yandex.ru
ORCID iD: 0000-0001-6923-6060

Graduate Student

Russian Federation, Moscow; Moscow

Olga B. Kondakova

National Medical Research Center for Children’s Health

Email: kondakovao68@gmail.com
ORCID iD: 0000-0002-6316-9992

Cand. Sci. (Med.)

Russian Federation, Moscow

Evgeny L. Laberko

Morozov Children’s City Clinical Hospital

Email: Laberko.lor@mail.ru
ORCID iD: 0009-0005-5761-7487

Cand. Sci. (Med.)

Russian Federation, Moscow

Oleg G. Malyshev

Patrice Lumumba Peoples’ Friendship University of Russia

Email: omalyshev03@vk.com
ORCID iD: 0000-0003-1174-0736

Medical Resident

Russian Federation, Moscow

Elina A. Nafanailova

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0009-0000-5971-2131

pulmonologist

Russian Federation, Moscow

Alina S. Reminnaia

Morozov Children’s City Clinical Hospital

Email: a_reminnaya@mail.ru
ORCID iD: 0009-0004-2714-4343

pulmonologist

Russian Federation, Moscow

Olga I. Simonova

Morozov Children’s City Clinical Hospital; National Medical Research Center for Children’s Health; Sechenov First Moscow State Medical University (Sechenov University)

Email: oisimonova@mail.ru
ORCID iD: 0000-0002-2367-9920

D. Sci. (Med.)

Russian Federation, Moscow; Moscow; Moscow

Natalia А. Sokolova

Morozov Children’s City Clinical Hospital; Pirogov Russian National Research Medical University

Email: sokolova.nat@mail.ru
ORCID iD: 0000-0002-0323-086X

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Svetlana V. Starevskaia

Saint Petersburg State Research Institute of Phthisiopulmonology; 10Mechnikov North-Western State Medical University

Email: svetlanastarevskaya@yandex.ru
ORCID iD: 0000-0002-5778-2213

D. Sci. (Med.)

Russian Federation, Saint-Petersburg; Saint Petersburg

Oleg G. Topilin

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0002-5302-0502

thoracic surgeon

Russian Federation, Moscow

Anna G. Tsverava

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0001-6975-1337

pulmonologist 

Russian Federation, Moscow

Irina O. Shmeleva

Saint Petersburg State Research Institute of Phthisiopulmonology; Mechnikov North-Western State Medical University

Email: shmeleva@mail.ru
ORCID iD: 0000-0001-9506-9286

pulmonologist

Russian Federation, Saint-Petersburg; Saint Petersburg

Yuliya F. Shubina

Morozov Children’s City Clinical Hospital; Pirogov Russian National Research Medical University

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0001-8661-3817

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Tatiana I. Iushina

Morozov Children’s City Clinical Hospital

Email: mdgkb@zdrav.mos.ru
ORCID iD: 0000-0002-2017-189X

pulmonologist

Russian Federation, Moscow

Kirill V. Savost'anov

National Medical Research Center for Children’s Health

Email: savostyanovkv@nczd.ru
ORCID iD: 0000-0003-4885-4171

D. Sci. (Biol.)

Russian Federation, Moscow

References

  1. Cleveland M. Situs inversus viscerum: an anatomic study. Arch Surg. 1926;13(3):343-68. doi: 10.1001/ARCHSURG.1926.01130090042003
  2. Baillie M. Account of a remarkable transposition of the viscera. Lond Med J. 1789;10(Pt. 2):178-97. PMID: 29140050
  3. Siewert A. Über einen Fall von Bronchiectasie bei einem Patienten mit situs inversus viscerum. Berliner Klinische Wochenschrift. 1904;41:139-41.
  4. Kartagener M. Zur Pathogenese der Bronchiektasien. I. Mitteilung: Bronchiektasien bei Situs viscerum inversus. Beiträge zur Klinik der Tuberkulose. 1933;83(4):489-501. doi: 10.1007/BF02141468
  5. Kartagener M, Stucki P. Bronchiectasis with situs inversus. Arch Pediatr. 1962; 79:193-207. PMID: 14454074
  6. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317-9. doi: 10.1126/science.1084576
  7. Фролов П.А., Колганова Н.И., Овсянников Д.Ю., и др. Возможности ранней диагностики первичной цилиарной дискинезии. Педиатрия. Журнал им. Г.Н. Сперанского. 2022;101(1):107-14 [Frolov PA, Kolganova NI, Ovsyannikov DYu, et al. Possibilities of early diagnosis of primary ciliary dyskinesia. Pediatria n.a. G.N. Speransky. 2022;101(1):107-14 (in Russian)]. doi: 10.24110/0031-403X-2022-101-1-107-114
  8. Shoemark A, Boon M, Brochhausen C, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J. 2020;55(4):1900725. doi: 10.1183/13993003.00725-2019
  9. Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007;69:423-50. doi: 10.1146/annurev.physiol.69.040705.141301
  10. Wallmeier J, Frank D, Shoemark A, et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet. 2019;105(5):1030-39. doi: 10.1016/j.ajhg.2019.09.022
  11. Paff T, Loges NT, Aprea I, et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet. 2017;100(1):160-8. doi: 10.1016/j.ajhg.2016.11.019
  12. Стрельникова В.А., Цверава А.Г., Овсянников Д.Ю., и др. Первичная цилиарная дискинезия у ребенка с синдромом Симпсона–Голаби–Бемеля II типа вследствие мутации гена OFD1. Пульмонология. 2023;33(2):259-65 [Strelnikova VA, Tsverava AG, Ovsyannikov DYu, et al. Primary ciliary dyskinesia in a child with type II Simpson–Golabi–Bemel syndrome due to OFD1 gene mutation. Pulmonologiya. 2023;33(2):259-65 (in Russian)]. doi: 10.18093/0869-0189-2023-33-2-259-265
  13. Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med. 2020;8(2):202-16. doi: 10.1016/S2213-2600(19)30374-1
  14. Pioch CO, Connell DW, Shoemark A. Primary ciliary dyskinesia and bronchiectasis: New data and future challenges. Arch Bronconeumol. 2023;59(3):134-6. doi: 10.1016/j.arbres.2022.12.001
  15. Horani A, Ferkol TW. Understanding primary ciliary dyskinesia and other ciliopathies. J Pediatr. 2021;230:15-22.e1. doi: 10.1016/j.jpeds.2020.11.040
  16. Pifferi M, Michelucci A, Conidi ME, et al. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J. 2010;35(6):1413-6. doi: 10.1183/09031936.00186209
  17. Behan L, Dimitrov BD, Kuehni CE, et al. PICADAR: A diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J. 2016;47(4):1103-12. doi: 10.1183/13993003.01551-2015
  18. Xia H, Huang X, Deng S, et al. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS One. 2021;16(6):e0252786. doi: 10.1371/journal.pone.0252786
  19. Chau JFT, Lee M, Chui MMC, et al. Functional evaluation and genetic landscape of children and young adults referred for assessment of bronchiectasis. Front Genet. 2022;13:933381. doi: 10.3389/fgene.2022.933381
  20. Olm MAK, Marson FAL, Athanazio RA, et al. Severe pulmonary disease in an adult primary ciliary dyskinesia population in Brazil. Sci Rep. 2019;9(1):8693. doi: 10.1038/s41598-019-45017-1
  21. Toro MDC, Ribeiro JD, Marson FAL, et al. Challenges in diagnosing primary ciliary dyskinesia in a Brazilian Tertiary Hospital. Genes (Basel). 2022;13(7):1252. doi: 10.3390/genes13071252
  22. Leslie JS, Rawlins LE, Chioza BA, et al. MNS1 variant associated with situs inversus and male infertility. Eur J Hum Genet. 2020;28(1):50-5. doi: 10.1038/s41431-019-0489-z
  23. Ferkol TW, Puffenberger EG, Lie H, et al. Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities. J Pediatr. 2013;163(2):383-7. doi: 10.1016/j.jpeds.2013.01.061
  24. Li Y, Yagi H, Onuoha EO, et al. DNAH6 and its interactions with PCD genes in heterotaxy and primary ciliary dyskinesia. PLoS Genet. 2016;12(2):e1005821. doi: 10.1371/journal.pgen.1005821
  25. Shi Y, Lei Q, Han Q. Dual-allele heterozygous mutation of DNAH5 gene in a boy with primary ciliary dyskinesia: A case report. Medicine (Baltimore). 2023;102(52):e36271. doi: 10.1097/MD.0000000000036271
  26. Hou YC, Yu HC, Martin R, et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc Natl Acad Sci USA. 2020;117(6):3053-62. doi: 10.1073/pnas.1909378117
  27. Quinlan-Jones E, Lord J, Williams D, et al. Molecular autopsy by trio exome sequencing (ES) and postmortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet Med. 2019;21(5):1065-73. doi: 10.1038/s41436-018-0298-8
  28. Alhalabi O, Abdulwahab A, Thomas M. The first case of a homozygous CCNO NM 021147.4 mutation associated with primary ciliary dyskinesia in two Indian siblings. Cureus. 2024;16(1):e52237. doi: 10.7759/cureus.52237
  29. Xu Y, Ueda K, Nishikido T, et al. Two Japanese pediatric patients with primary ciliary dyskinesia caused by loss-of-function variants in the CCNO gene. Cureus. 2024;16(4):e58854. doi: 10.7759/cureus.58854
  30. Dabrowski M, Bukowy-Bieryllo Z, Jackson CL, Zietkiewicz E. Properties of non-aminoglycoside compounds used to stimulate translational readthrough of PTC mutations in primary ciliary dyskinesia. Int J Mol Sci. 2021;22(9):4923. doi: 10.3390/ijms22094923
  31. Seidel F, Laser KT, Klingel K, et al. Pathogenic variants in cardiomyopathy disorder genes underlie pediatric myocarditis-further impact of heterozygous immune disorder gene variants? J Cardiovasc Dev Dis. 2022;9(7):216. doi: 10.3390/jcdd9070216
  32. Николаева Е.Д., Овсянников Д.Ю., Стрельникова В.А., и др. Характеристика пациентов с первичной цилиарной дискинезией. Пульмонология. 2023;33(2):198-209 [Nikolaeva ED, Ovsyannikov DYu, Strel’nikova VA, et al. Characteristics of patients with primary ciliary dyskinesia. Pulmonologiya. 2023;33(2):198-209 (in Russian)]. doi: 10.18093/0869-0189-2023-33-2-198-209
  33. Aghamir SMK, Roudgari H, Heidari H, et al. Whole exome sequencing to find candidate variants for the prediction of kidney transplantation efficacy. Genes (Basel). 2023;14(6):1251. doi: 10.3390/genes14061251
  34. Thomas B, Mahmoud RF, Rüdiger S, et al. HYDIN variants cause primary ciliary dyskinesia in the Finnish population. MedRxiv. 2024;05(28):24307879. doi: 10.1101/2024.05.28.24307879
  35. Buratti E, Chivers M, Královicová J, et al. Aberrant 5’ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007;35(13):4250-63. doi: 10.1093/nar/gkm402
  36. Horani A, Ferkol TW, Shoseyov D, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436. doi: 10.1371/journal.pone.0059436
  37. Zariwala MA, Gee HY, Kurkowiak M, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336-45. doi: 10.1016/j.ajhg.2013.06.007
  38. Lucas JS, Barbato A, Collins SA, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1):1601090. doi: 10.1183/13993003.01090-2016
  39. Баранов А.А., Намазова-Баранова Л.С., Вишнева Е.А., и др. Первичная цилиарная дискинезия у детей. Педиатрическая фармакология. 2018;15(1):20-31 [Baranov AA, Namazova-Baranova LS, Vishneva EA Primary ciliary dyskinesia in children. Pediatricheskaya farmakologiya=Pediatric pharmacology. 2018;15(1):20-31 (in Russian)]. doi: 10.15690/pf.v15i1.1840
  40. Shapiro AJ, Davis SD, Polineni D, et al. Diagnosis of primary ciliary dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2018;197(12):e24-39. doi: 10.1164/rccm.201805-0819ST
  41. Фролов П.А., Жесткова М.А., Овсянников Д.Ю., и др. Бронхоэктазы, не связанные с муковисцидозом, у детей: этиологическая структура, клинико-лабораторная и компьютерно-томографическая характеристика. Педиатрия. Consilium Medicum. 2022;2:166-73 [Frolov PA, Zhestkova MA, Ovsyannikov DYu, et al. Non cystic fibrosis-related bronchiectasis in children: Etiological structure, clinical and laboratory and computed tomographic characteristics. Pediatrics. Consilium Medicum. 2022;2:166-73 (in Russian)]. doi: 10.26442/26586630.2022.2.201679
  42. Баранов А.А., Капранов Н.И., Каширская Н.Ю., и др. Проблемы диагностики муковисцидоза и пути их решения в России. Педиатрическая фармакология. 2014;11(6):16-23 [Baranov AA, Kapranov NI, Kashirskaya NYu, et al. Diagnostic problems of mucoviscidosis and ways of solution in Russia. Pediatricheskaya farmakologiya=Pediatric pharmacology. 2014;11(6):16-23 (in Russian)].
  43. Савостьянов К.В. Современные алгоритмы генетической диагностики редких наследственных болезней у российских пациентов. Информационные материалы. М.: Полиграфист и издатель, 2022 [Savost’ianov K.V. Sovremennye algoritmy geneticheskoi diagnostiki redkikh nasledstvennykh boleznei u rossiiskikh patsientov. Informatsionnye materialy. Moscow: Poligrafist i izdatel’, 2022 (in Russian)]. EDN RDUZGH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Traction bilateral bronchiectases (BEs) according to chest CT in a 6-year-old boy with PCD (axial view).

Download (101KB)
3. Fig. 2. Traction bilateral BEs according to chest CT in a 6-year-old boy with PCD (coronary view).

Download (105KB)
4. Fig. 3. Chest X-ray of an 8-year-old girl: dextrocardia, the gastric air bubble is located on the right, and the liver is on the left (Siewert–Kartagener syndrome).

Download (222KB)
5. Fig. 4. Immobile ciliated epithelium of the inferior nasal concha in a 3-year-old girl with PCD.

Download (233KB)
6. Fig. 5. Results of transmission electron microscopy of a 6-year-old boy with PCD. Total absence of inner dynein arms. In 12 of the 43 cilia viewed on strictly transverse sections, the structure of the peripheral microtubule (MT) doublet was disturbed: the absence of one of the MT in the doublet, the shift of the doublet (red arrows). In 8 of the 43 cilia, the central pair of MT is shifted, or only 1 MT is present (blue arrows).

Download (219KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.