Pharynx infectious and inflammatory diseases local etiotropic therapy efficacy comprehensive assessment in preschool and primary school-age children

Cover Page

Cite item

Full Text

Abstract

Background. The oropharyngeal microbiota is important in maintaining resistance, eliminating viruses and regulating local protective reactions in response to inflammation in acute respiratory infections.

Aim. To evaluate of the effect of topical etiotropic therapy on clinical manifestations, elimination of viruses and on oropharyngeal microbiota in the treatment of acute infectious inflammation of the throat that occurred as part of acute respiratory infections in children aged 5–10 years.

Materials and methods. 120 outpatient patients randomized into 3 equal groups were treated for 7 days: in Group 1 – 0.2% hexethidine-containing aerosol, in Group 2 – 0.03 mg combined spray gramicidin S and 0.1 mg cetylpyridinium chloride, in Group 3 – 0.01% topical solution containing benzyldimethyl-myristoylamino-propylammonium. Changes in the severity of clinical manifestations were compared (integral indicator – modified Tonsillopharyngitis Severity Score – TSSm for children, the severity of the "sore throat" symptom on the Wong–Baker scale, the severity of local signs of inflammation according to pharyngoscopy data) in groups at Visit 2 (day 5±1) and Visit 3 (day 12±1) compared with the Visit 1. The elimination of acute respiratory infection pathogens was evaluated: polymerase chain reaction (PCR) of oropharyngeal smears obtained on days 1, 3 and 5 (±1) – PCR-1, PCR-2, PCR-3 respectively, with the detection of 12 respiratory viruses, including SARS-CoV-2. The state of the microbiota was assessed by sequencing the full-size 16S gene in samples obtained before and after treatment 1st and 12th (±1) days, and compared with 19 indicators in healthy.

Results. By Visit 3, the decrease in TSSm indicators was: 4.0±1.07 in Group 1; 5.0±1.48 in Group 2 and 4.0±1.02 in Group 3. The intergroup differences between Group 2 and 1, Group 2 and 3 were statistically significant (p<0.05). The severity of sore throat by Visit 3 decreased in groups 1, 2 and 3 respectively by 2.0±0.90, 2.5±0.61 and 2.1±0.60, intergroup differences between groups 2 and 1, 2 and 3 had statistical significance at p<0.05. The time to achieve complete relief of the disease according to the TSSm indicator was (day, M±SE): 16.6±1.47 in Group 1; 11.9±1.13 in Group 2 and 12.4±1.38 in Group 3, intergroup differences (groups 1 and 2) are significant, p<0.05. The time of complete relief from sore throat for groups 1–3 was 12.6±0.96, 8.0±0.87 and 9.4±1.01 respectively, intergroup differences (groups 1 and 2) were significant, p<0.05. By Visit 2, the proportion of patients with a negative PCR result increased in Group 1 by 25%, in Group 2 by 43% and in Group 3 by 38%, which corresponded to the elimination of 81, 92 and 74% of viruses detected in groups according to PCR-1 and PCR-2. The microbiota of participants in all groups before treatment differed from the microbiota of healthy in terms of alpha and beta diversity, as well as in terms of indicators obtained by the NearesBalance method. After completion of treatment, changes in the microbiota in terms of beta diversity were observed in all groups compared to the initial state. In contrast to groups 1 and 3, in Group 2 there were statistically significant changes in species-level balances between groups of microbes that distinguish between sick and healthy, towards indicators of healthy.

Conclusion. Topical etiotropic medications provide rapid relief of complaints and local signs of inflammation in the treatment of patients aged 5–10 years with sore throat in acute respiratory infections and contribute to the rapid elimination of pathogens of acute respiratory infections. A combined preparation containing an antiseptic and a bacteriocin-like antimicrobial peptide gramicidin S provides a more pronounced therapeutic effect at an earlier time and the elimination of 90% of all respiratory viruses, including SARS-CoV-2, by the fifth day of therapy, and also has the most sparing effect on the oropharyngeal microbiota compared to antiseptic monopreparations, which may explain its more pronounced anti-inflammatory effect.

Full Text

Restricted Access

About the authors

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

D. Sci. (Med.), Prof., Russian Medical Academy of Continuous Professional Education

Russian Federation, Moscow

Irina S. Kuznetsova

Russian Medical Academy of Continuous Professional Education

Email: doctor_irina_kuznetsova@mail.ru
ORCID iD: 0000-0001-5164-682X

Аssistant, Russian Medical Academy of Continuous Professional Education

Russian Federation, Moscow

Tatiana A. Cherednikova

Children's City Polyclinic №140

Email: zakharova-rmapo@yandex.ru

Pediatrician, Children's City Polyclinic №140

Russian Federation, Moscow

Anastasia V. Makhaeva

Russian Medical Academy of Continuous Professional Education; Children's City Polyclinic №140

Email: avmakhaeva305@yandex.ru
ORCID iD: 0000-0002-0006-5889

Graduate Student, Russian Medical Academy of Continuous Professional Education, Pediatrician, Children's City Polyclinic №140

Russian Federation, Moscow; Moscow

Stanislav I. Koshechkin

Knomics LLC

Email: st.koshechkin@knomx.com
ORCID iD: 0000-0002-7389-0476

Cand. Sci. (Biol.), Knomics LLC

Russian Federation, Moscow

Vladimir A. Romanov

Knomics LLC

Email: romanovv@knomx.com
ORCID iD: 0000-0002-7540-5884

Senior Res. Officer, Knomics LLC

Russian Federation, Moscow

Vera E. Odintsova

Knomics LLC

Email: v.odintsova@knomx.com
ORCID iD: 0000-0003-1897-4033

Department Head, Knomics LLC

Russian Federation, Moscow

References

  1. Krüger K, Töpfner N, Berner R, et al. Clinical Practice Guideline: Sore Throat. Dtsch Arztebl Int. 2021;118(11):188-94. doi: 10.3238/arztebl.m2021.0121
  2. Радциг Е.Ю., Гуров А.В. Боль в горле. Перекрестье проблем и поиски решений. РМЖ. Мать и дитя. 2022;5(3):228-36 [Radtsig EYu, Gurov AV. Sore throat. Crossing problems and finding solutions. Russian Journal of Woman and Child Health. 2022;5(3):228-36 (in Russian)]. doi: 10.32364/2618-8430-2022-5-3-228-236
  3. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-24. doi: 10.1016/S0140-6736(22)00327-0
  4. Möhler R, Jenetzky E, Schwarz S, et al. Children's Symptoms with a Febrile Illness and a Positive or Negative Test of SARS-CoV-2 during the Omicron Wave. Children (Basel). 2023;10(3):419. doi: 10.3390/children10030419
  5. Wi D, Choi SH. Positive Rate of Tests for Group a Streptococcus and Viral Features in Children with Acute Pharyngitis. Children (Basel). 2021;8(7):599. doi: 10.3390/children8070599
  6. Радциг Е.Ю., Евсикова М.М., Луговая Ю.В. Клинико-этиологические особенности течения острого воспаления глотки у детей разных возрастных групп. Педиатрия. Журнал им. Г.Н. Сперанского. 2021;100(1):130-5 [Radtsig EYu, Evsikova MM, Lugovaya YuV. Clinical and etiological features of the pharynx acute inflammation course in children of different age groups. Pediatriya. Zhurnal im. G.N. Speranskogo. 2021;100(1):130-5 (in Russian)]. doi: 10.24110/0031-403X-2021-100-1-130-135
  7. Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018;9:2640. doi: 10.3389/fimmu.2018.02640
  8. Козырев Е.А., Бабаченко И.В., Сидоренко С.В. Современные аспекты изучения респираторной микробиоты и ее роль в развитии инфекций нижних дыхательных путей. Инфекционные болезни. 2022;20(1):99-106 [Kozyrev EA, Babachenko IV, Sidorenko SV. Current aspects of studying respiratory microbiota and its role in the development of lower respiratory tract infections. Infekc. bolezni (Infectious diseases). 2022;20(1):99-106 (in Russian)]. doi: 10.20953/1729-9225-2022-1-99-106
  9. Lee KH, Gordon A, Shedden K, et al. The respiratory microbiome and susceptibility to influenza virus infection. PLoS One. 2019;14(1):e0207898. doi: 10.1371/journal.pone.0207898
  10. Tsang TK, Lee KH, Foxman B, et al. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis. 2020;71(5):1195-203. doi: 10.1093/cid/ciz968
  11. Ramos-Sevillano E, Wade WG, Mann A, et al. The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clin Infect Dis. 2019;68(12):1993-2002. doi: 10.1093/cid/ciy821
  12. Wen Z, Xie G, Zhou Q, et al. Distinct Nasopharyngeal and Oropharyngeal Microbiota of Children with Influenza A Virus Compared with Healthy Children. Biomed Res Int. 2018;2018:6362716. doi: 10.1155/2018/6362716
  13. Hu Q, Dai W, Zhou Q, et al. Dynamic oropharyngeal and faecal microbiota during treatment in infants hospitalized for bronchiolitis compared with age-matched healthy subjects. Sci Rep. 2017;7(1):11266. doi: 10.1038/s41598-017-11311-z
  14. DeMuri GP, Gern JE, Eickhoff JC, et al. Dynamics of Bacterial Colonization With Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis During Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. Clin Infect Dis. 2018;66(7):1045-53. doi: 10.1093/cid/cix941
  15. Rattanaburi S, Sawaswong V, Chitcharoen S, et al. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood). 2022;247(5):409-15. doi: 10.1177/15353702211057473
  16. Rueca M, Fontana A, Bartolini B, et al. Investigation of Nasal/Oropharyngeal Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. Int J Environ Res Public Health. 2021;18(4):2174. doi: 10.3390/ijerph18042174
  17. Xu Q, Wischmeyer J, Gonzalez E, Pichichero ME. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection. J Infect. 2017;75(1):26-34. doi: 10.1016/j.jinf.2017.04.003
  18. Bjornsdottir B, Benitez Hernandez U, Haraldsson A, Thors V. Febrile Children with Pneumonia Have Higher Nasopharyngeal Bacterial Load Than Other Children with Fever. Pathogens. 2023;12(4):517. doi: 10.3390/pathogens12040517
  19. Ansaldo E, Farley TK, Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021;39:449-79. doi: 10.1146/annurev-immunol-093019-112348
  20. Hong BY, Sobue T, Choquette L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 2019;7(1):66. doi: 10.1186/s40168-019-0679-5
  21. Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928-34. doi: 10.1128/AEM.03133-13
  22. Shu Y, Upara C, Ding Q, et al. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575-85. doi: 10.1002/JPER.22-0333
  23. do Amaral GCLS, Hassan MA, Sloniak MC, et al. Effects of antimicrobial mouthwashes on the human oral microbiome: Systematic review of controlled clinical trials. Int J Dent Hyg. 2023;21(1):128-40. doi: 10.1111/idh.12617
  24. Gupta A, Bhanushali S, Sanap A, et al. Oral dysbiosis and its linkage with SARS-CoV-2 infection. Microbiol Res. 2022;261:127055. doi: 10.1016/j.micres.2022.127055
  25. Алексеева Е.И., Анциферов М.Б., Аронов Л.С., и др. Порядок ведения детей с острыми респираторными инфекциями, в том числе COVID-19, находящихся на амбулаторном лечении в медицинских организациях государственной системы здравоохранения города Москвы. Под ред. А.И. Хрипуна. М.: ГБУ «НИИОЗММ ДЗМ», 2021 [Alexeeva EI, Antsiferov MB, Aronov LS, et al. Poriadok vedeniia detei s ostrymi respiratornymi infektsiiami, v tom chisle COVID-19, nakhodiashchikhsia na ambulatornom lechenii v meditsinskikh organizatsiiakh gosudarstvennoi sistemy zdravookhraneniia goroda Moskvy.Pod red. AI Khripuna. Moscow: GBU "NIIOZMM DZM", 2021 (in Russian)].
  26. Союз педиатров России. Евро-Азиатское общество по инфекционным болезням. Клинические рекомендации. ID 25. Острая респираторная вирусная инфекция (ОРВИ). Возрастная группа: дети, 2022 [Soiuz pediatrov Rossii. Evro-Aziatskoe obshchestvo po infektsionnym bolezniam. Klinicheskie rekomendatsii. ID 25. Ostraia respiratornaia virusnaia infektsiia (ORVI). Vozrastnaia gruppa: deti, 2022 (in Russian)].
  27. Efimova D, Tyakht A, Popenko A, et al. Knomics-Biota – a system for exploratory analysis of human gut microbiota data. BioData Min. 2018;11:25. doi: 10.1186/s13040-018-0187-3
  28. De Coster W, D'Hert S, Schultz DT, et al. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666-9. doi: 10.1093/bioinformatics/bty149
  29. Curry KD, Wang Q, Nute MG, et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat Methods. 2022;19(7):845-53. doi: 10.1038/s41592-022-01520-4
  30. Kim BR, Shin J, Guevarra R, et al. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol. 2017;27(12):2089-93. doi: 10.4014/jmb.1709.09027
  31. Wagner BD, Grunwald GK, Zerbe GO, et al. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front Microbiol. 2018;9:1037. doi: 10.3389/fmicb.2018.01037
  32. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. Logratio Analysis and Compositional Distance. Math Geol. 2000;32:271-5. doi: 10.1023/A:1007529726302
  33. Odintsova VE, Klimenko NS, Tyakht AV. Approximation of a Microbiome Composition Shift by a Change in a Single Balance Between Two Groups of Taxa. mSystems. 2022;7(3):e0015522. doi: 10.1128/msystems.00155-22
  34. Ansaldo E, Farley TK, Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021;39:449-79. doi: 10.1146/annurev-immunol-093019-112348
  35. Edouard S, Million M, Bachar D, et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis. 2018;37(9):1725-33. doi: 10.1007/s10096-018-3305-8
  36. Tsang TK, Lee KH, Foxman B, et al. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis. 2020;71(5):1195-203. doi: 10.1093/cid/ciz968
  37. Chonmaitree T, Jennings K, Golovko G, et al. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS One. 2017;12(7):e0180630. doi: 10.1371/journal.pone.0180630
  38. Rosas-Salazar C, Shilts MH, Tovchigrechko A, et al. Differences in the Nasopharyngeal Microbiome During Acute Respiratory Tract Infection With Human Rhinovirus and Respiratory Syncytial Virus in Infancy. J Infect Dis. 2016;214(12):1924-8. doi: 10.1093/infdis/jiw456
  39. Shu Y, Upara C, Ding Q, et al. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575-85. doi: 10.1002/JPER.22-0333
  40. Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928-34. doi: 10.1128/AEM.03133-13
  41. Zhang G, Rudney JD. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-κB. Mol Oral Microbiol. 2011;26(2):150-63. doi: 10.1111/j.2041-1014.2010.00600.x
  42. Miki Y, Taketomi Y, Kidoguchi Y, et al. Group IIA secreted phospholipase A2 controls skin carcinogenesis and psoriasis by shaping the gut microbiota. JCI Insight. 2022;7(2):e152611. doi: 10.1172/jci.insight.152611
  43. Taketomi Y, Miki Y, Murakami M. Old but New: Group IIA Phospholipase A2 as a Modulator of Gut Microbiota. Metabolites. 2022;12(4):352. doi: 10.3390/metabo12040352
  44. Crittenden S, Goepp M, Pollock J, et al. Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci Adv. 2021;7(7):eabd7954. doi: 10.1126/sciadv.abd7954
  45. Kremleva EA, Bukharin OV. Effect of IL-1beta on growth properties of vaginal microsymbionts. Zh Mikrobiol Epidemiol Immunobiol. 2013;4:65-9.
  46. Modéer T, Yucel-Lindberg T. Benzydamine reduces prostaglandin production in human gingival fibroblasts challenged with interleukin-1 beta or tumor necrosis factor alpha. Acta Odontol Scand. 1999;57(1):40-5. doi: 10.1080/000163599429093
  47. Soto Ocaña J, Bayard NU, Zackular JP. Pain killers: the interplay between nonsteroidal anti-inflammatory drugs and Clostridioides difficile infection. Curr Opin Microbiol. 2022;65:167-74. doi: 10.1016/j.mib.2021.11.011
  48. Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect. 2016;22(2):178.e1-9. doi: 10.1016/j.cmi.2015.10.003
  49. Мелехина Е.В., Музыка А.Д., Понежева Ж.Б., Горелов А.В. Цетилпиридиния хлорид в составе комбинированных препаратов для взрослых и детей в период пандемии COVID-19: подтвержденные возможности и перспективы. РМЖ. Медицинское обозрение. 2021;5(11):728-36 [Melekhina EV, Muzyka AD, Ponezheva ZhB, Gorelov AV. Cetylpyridinium chloride as a part of a combined medication for adults and children during the COVID-19 pandemic: established and perspective use. Russian Medical Inquiry. 2021;5(11):728-36 (in Russian)]. doi: 10.32364/2587-6821-2021-5-11-728-736
  50. Mao X, Hiergeist A, Auer DL, et al. Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Front Microbiol. 2022;13:934525. doi: 10.3389/fmicb.2022.934525
  51. Radford JR, Beighton D, Nugent Z, Jackson RJ. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. J Dent. 1997;25(1):35-40. doi: 10.1016/s0300-5712(95)00116-6
  52. Zayed N, Boon N, Bernaerts K, et al. Differences in chlorhexidine mouthrinses formulations influence the quantitative and qualitative changes in in-vitro oral biofilms. J Periodontal Res. 2022;57(1):52-62. doi: 10.1111/jre.12937
  53. Гуров А.В., Боровкова К.Е., Крышень К.Л., и др. Оценка бактерицидной активности грамицидина С в отношении клинических изолятов Streptococcus pneumoniae и Staphylococcus aureus при однократном и многократном воздействии. Антибиотики и химиотерапия. 2022;67:7-8:8-18 [Gurov AV, Borovkova KE, Kryshen KL, et al. Evaluation of the bactericidal activity of gramicidin S against Streptococcus pneumoniae and Staphylococcus aureus clinical isolates with single and multiple (course) exposure. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022;67:7-8:8-18 (in Russian)]. doi: 10.37489/0235-2990-2022-67-7-8-8-18
  54. Wenzel M, Kohl B, Münch D, et al. Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother. 2012;56(11):5749-57. doi: 10.1128/AAC.01380-12
  55. Hancock RE. Cationic peptides: effectors in innate immunity andnovel antimicrobials. Lancet Infect Dis. 2001;1(3):156-64. doi: 10.1016/s14733099(01)00092-5.27
  56. Захарова И.Н., Геппе Н.А., Сугян Н.Г., и др. Топические этиотропные препараты в терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного возраста. Результаты многоцентрового рандомизированного клинического исследования. Российская оториноларингология. 2021;20(1):99-113 [Zakharova IN, Geppe NA, Sugyan NG, et al. Topical etiotropic drugs in therapy of infectious inflammatory diseases of pharynx in preschool children. Results of multicenter randomized comparative clinical trial. Rossiiskaya otorinolaringologiya. 2021;20(1):99-113 (in Russian)]. doi: 10.18692/1810-4800-2021-1-99-113

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The frequency of "sore throat" symptom (a) and the main pharyngoscopic signs of oropharynx inflammation (mucosal hyperemia) by the groups (b) – at Visit 1.

Download (119KB)
3. Fig. 2. Decrease in the severity of disease manifestations: a – mean changes in the integral indicator value (TSSm score) by Visit 2; b – by Visit 3 compared to Visit 1.

Download (101KB)
4. Fig. 3. Decrease in the "sore throat" symptom severity according to the Wong–Baker scale at Visits 2 and 3 compared to Visit 1.

Download (70KB)
5. Fig. 4. Decrease in the severity of local pharyngeal inflammation signs according to pharyngoscopy at Visits 2 and 3 compared to Visit 1.

Download (37KB)
6. Fig. 5. The proportion of patients showed relief of the disease symptoms (a), the average time to relief of the disease symptoms (b).

Download (121KB)
7. Fig. 6. The results of polymerase chain reaction (PCR) detection during the study: a – the proportion of participants with nuclear acids of acute respiratory infections (ARI) viruses was detected according to PCR-1 and PCR-2 data; b – the change in the proportion of PCR-negative patients according to PCR-3 data; c – the proportion of eliminated viruses according to PCR-3 data, initially detected by PCR-1 and PCR-2.

Download (136KB)
8. Fig. 7. Differences in the taxonomic composition of samples from study subjects at Visit 1 and healthy peers: a – heat map of the taxonomic composition of microbiota samples at the species level; b – box-and-whisker graph for balance values.

Download (505KB)
9. Fig. 8. Changes in the taxonomic composition of samples from study subjects from Visit 1 to Visit 3. Changes at the species level: a – heat maps for group 1; b – for group 2; c – for group 3; d – box-and-whisker graph for balance values.

Download (752KB)
10. Fig. 9. Changes in the balances of microorganisms that distinguish patients from healthy peers between groups.

Download (51KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74329 от 19.11.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies